【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且滿足.

1)求拋物線的方程;

2)過(guò)拋物線上的任意一點(diǎn)作拋物線的切線,交拋物線的準(zhǔn)線于點(diǎn).軸上是否存在一個(gè)定點(diǎn),使以為直徑的圓恒過(guò).若存在,求出的坐標(biāo),若不存在,則說(shuō)明理由.

【答案】(1)(2)存在一個(gè)定點(diǎn),使以為直徑的圓恒過(guò)

【解析】

1)利用拋物線的定義,結(jié)合,求得,由此求得拋物線的方程.

2)首先假設(shè)存在一個(gè),使以為直徑的圓恒過(guò).設(shè)出切線的方程,利用導(dǎo)數(shù)建立切線斜率的等量關(guān)系式,結(jié)合,利用向量數(shù)量積的坐標(biāo)運(yùn)算列方程,解方程求得點(diǎn)的坐標(biāo),由此證得存在點(diǎn)符合題意.

1)由拋物線定義知,又,

,解得,

∴拋物線的方程為.

2)存在一個(gè),使以為直徑的圓恒過(guò).

由(1)得拋物線,準(zhǔn)線方程為.

依題意切線斜率一定存在且不為0,設(shè)切線方程為.

設(shè)定點(diǎn)為,,,

,∴切線斜率,又

,∴,解得.

為直徑的圓恒過(guò)定點(diǎn)等價(jià)于.

,.

恒成立.

,解得,存在一個(gè)定點(diǎn),使以為直徑的圓恒過(guò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;

根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時(shí)底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點(diǎn).

1)寫(xiě)出曲線C和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)?/span>R的函數(shù)y=fx),部分xy的對(duì)應(yīng)關(guān)系如表:

x

2

1

0

1

2

3

4

5

y

0

2

3

2

0

1

0

2

1)求f{f[f0)]};

2)數(shù)列{xn}滿足x1=2,且對(duì)任意nN*,點(diǎn)(xn,xn+1)都在函數(shù)y=fx)的圖象上,求x1+x2+…+x4n;

3)若y=fx)=Asinωx+φ)+b,其中A00ω<π,0φ<π,0b3,求此函數(shù)的解析式,并求f1)+f2)+…+f3n)(nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結(jié)論中不一定正確的是(

整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

C.互聯(lián)網(wǎng)行業(yè)中從事設(shè)計(jì)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事市場(chǎng)崗位的90后人數(shù)不足總?cè)藬?shù)的10%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重(單位:kg)情況如三維餅圖(1)所示,經(jīng)過(guò)四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.

對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論正確的是(

A.他們健身后,體重在區(qū)間內(nèi)的人增加了2個(gè)

B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒(méi)有改變

C.他們健身后,20人的平均體重大約減少了

D.他們健身后,原來(lái)體重在區(qū)間內(nèi)的肥胖者體重都有減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,圓與圓外切于點(diǎn),且過(guò)點(diǎn),則圓的標(biāo)準(zhǔn)方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前n項(xiàng)組成集合,從集合中任取個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列,當(dāng)時(shí),時(shí),;

1)若集合,求當(dāng)時(shí),的值;

2)若集合,證明:時(shí)集合時(shí)集合(為了以示區(qū)別,用表示)有關(guān)系式,其中;

3)對(duì)于(2)中集合.定義,求(用n表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案