【題目】在平面直角坐標(biāo)系中,已知圓,圓與圓外切于點(diǎn),且過點(diǎn),則圓的標(biāo)準(zhǔn)方程為_________.

【答案】

【解析】

將圓的方程化為標(biāo)準(zhǔn)方程,可求出的值,記點(diǎn),可知圓心為直線和線段中垂線的交點(diǎn),進(jìn)而可求出點(diǎn)的坐標(biāo),計(jì)算出為圓的半徑,即可得出圓的標(biāo)準(zhǔn)方程.

記點(diǎn)、,圓的標(biāo)準(zhǔn)方程為,圓心,

將點(diǎn)的坐標(biāo)代入圓的方程得,得.

①若,則點(diǎn),線段的中垂線方程為,直線的方程為,

由題意可知,圓心在直線上,且在線段的中垂線上,

聯(lián)立,解得,則圓心的坐標(biāo)為,

的半徑為,,圓的半徑為,

此時(shí),,則兩圓內(nèi)切,不合乎題意;

②若,則點(diǎn),線段的中垂線方程為,直線的方程為,

由題意可知,圓心在直線上,且在線段的中垂線上,

聯(lián)立,解得,則圓心的坐標(biāo)為,

的半徑為,,圓的半徑為

此時(shí),,則兩圓外切,合乎題意.

綜上所述,圓的標(biāo)準(zhǔn)方程為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一些數(shù)學(xué)用語,塹堵意指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱,而陽馬指底面為矩形,且有一側(cè)棱垂直于底面的四棱錐.現(xiàn)有一如圖所示的塹堵,,若,當(dāng)陽馬體積最大時(shí),則塹堵的外接球體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且滿足.

1)求拋物線的方程;

2)過拋物線上的任意一點(diǎn)作拋物線的切線,交拋物線的準(zhǔn)線于點(diǎn).軸上是否存在一個(gè)定點(diǎn),使以為直徑的圓恒過.若存在,求出的坐標(biāo),若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計(jì)劃購買80元的土特產(chǎn),請列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域,并判斷的奇偶性;

2)如果當(dāng)時(shí),的值域是,求的值;

3)對任意的,,是否存在,使得,若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,則;

B.已知直線平面,直線平面,則“”是“”的充分不必要條件;

C.若隨機(jī)變量服從二項(xiàng)分布:,;

D.的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間上的函數(shù),若同時(shí)滿足:

)若存在閉區(qū)間,使得任取,都有是常數(shù));

)對于內(nèi)任意,當(dāng),時(shí)總有恒成立,則稱函數(shù)為“平底型”函數(shù).

1)判斷函數(shù)是否是“平底型”函數(shù)?簡要說明理由;

2)設(shè)是(1)中的“平底型”函數(shù),若不等式對一切恒成立,求實(shí)數(shù)的取值范圍;

3)函數(shù)是區(qū)間上的“平底型”函數(shù),求滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案