【題目】某中學(xué)校本課程開(kāi)設(shè)了A、B、C、D共4門選修課,每個(gè)學(xué)生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生:
(Ⅰ)求這3名學(xué)生選修課所有選法的總數(shù);
(Ⅱ)求恰有2門選修課沒(méi)有被這3名學(xué)生選擇的概率;
(Ⅲ)求A選修課被這3名學(xué)生選擇的人數(shù)的分布列 .
【答案】(1)64.
(2).
(3)見(jiàn)解析.
【解析】
(1)每個(gè)學(xué)生有四個(gè)不同的選擇,由此根據(jù)分步乘法計(jì)數(shù)原理,能求出這3名學(xué)生選修課所有選法的總數(shù).
(2)由已知利用排列組合知識(shí)能求出恰有2門選修課這3名學(xué)生都沒(méi)選擇的概率.
(3)A選修課被這3名學(xué)生選擇的人數(shù)為,則的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列.
(Ⅰ)每個(gè)學(xué)生有四個(gè)不同選擇,根據(jù)乘法法則,選法總數(shù)N=
(Ⅱ) 恰有2門選修課這3名學(xué)生都沒(méi)選擇的概率為
(Ⅲ) 設(shè)A選修課被這3名學(xué)生選擇的人數(shù)為,則=0,1,2,3
P(=0)=, P(=1)=,
P(=2)=, P(=3)= ,
∴A選修課被這3名學(xué)生選擇的人數(shù)的分布列為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinx,1), = ,函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對(duì)數(shù)的底數(shù),a,b∈R)
(1)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),求f′(x)的遞增區(qū)間;
(2)當(dāng)a>0時(shí),證明:f′(x)的最小值小于零;
(3)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知曲線C的參數(shù)方程為 (α為參數(shù)).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ﹣ )=2
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<x< ,sinx﹣cosx= ,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,則2a+3b+c=( )
A.50
B.70
C.110
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.
(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);
(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,真命題的序號(hào)有 .(寫出所有真命題的序號(hào))
①若,則“”是“”成立的充分不必要條件;
②命題“使得”的否定是“均有”;
③命題“若,則或”的否命題是“若,則”;
④函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)滿足f′(x)+f(x)<0,設(shè)a=f(m﹣m2),b=e f(1),則a,b的大小關(guān)系是( )
A.a>b
B.a<b
C.a=b
D.a,b的大小與m的值有關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com