Processing math: 0%
17.不重合的三個(gè)平面把空間分成n部分,則n的可能值為4,6,7或8.

分析 分別討論三個(gè)平面的位置關(guān)系,根據(jù)它們位置關(guān)系的不同,確定平面把空間分成的部分?jǐn)?shù)目.

解答 解:若三個(gè)平面互相平行,則可將空間分為4部分;
若三個(gè)平面有兩個(gè)平行,第三個(gè)平面與其它兩個(gè)平面相交,則可將空間分為6部分;
若三個(gè)平面交于一線,則可將空間分為6部分;
若三個(gè)平面兩兩相交且三條交線平行(聯(lián)想三棱柱三個(gè)側(cè)面的關(guān)系),則可將空間分為7部分;
若三個(gè)平面兩兩相交且三條交線交于一點(diǎn)(聯(lián)想墻角三個(gè)墻面的關(guān)系),則可將空間分為8部分;
故n等于4,6,7或8.
故答案為4,6,7或8.

點(diǎn)評(píng) 本題考查平面的基本性質(zhì)及推論,要討論三個(gè)平面不同的位置關(guān)系.考查學(xué)生的空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)tan(α-\frac{π}{4})=\frac{1}{4},則tan(α+\frac{π}{4})=( �。�
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在(0,+∞)的函數(shù)f(x)=|4x(1-x)|,若關(guān)于x的方程f2(x)+(t-3)f(x)+t-2=0有且只有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)t的取值集合是{2,5-2\sqrt{2}}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.
(1)當(dāng)a=\frac{1}{2}時(shí),求(∁UB)∩A.
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在某次數(shù)學(xué)考試中,考生的成績(jī)?chǔ)畏䦶囊粋€(gè)正態(tài)分布,即ξ~N(90,100).
(1)試求考試成績(jī)?chǔ)挝挥趨^(qū)間(70,110)上的概率是多少?
(2)若這次考試共有2 000名考生,試估計(jì)考試成績(jī)?cè)冢?0,100)間的考生大約有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,則實(shí)數(shù)a的取值集合為(  )
A.[-\frac{1}{12},0]B.[-\frac{1}{12},-\frac{4}{49}C.(-\frac{4}{49},0]D.[-\frac{4}{49},0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=|log3x|的圖象與直線l1:y=m從左至右分別交于點(diǎn)A,B,與直線{l_2}:y=\frac{8}{2m+1}(m>0)從左至右分別交于點(diǎn)C,D.記線段AC和BD在x軸上的投影長(zhǎng)度分別為a,b,則\frac{a}的最小值為(  )
A.81\sqrt{3}B.27\sqrt{3}C.9\sqrt{3}D.3\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若sinα=\frac{4}{5},且α是第二象限的角,則tanα+cotα=-\frac{25}{12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},則“x∈A∪B“是“x∈C“的( �。�
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案