已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/90/1/1ja1l4.png" style="vertical-align:middle;" />,當(dāng)時(shí),,且對(duì)于任意的,恒有成立.
(1)求;
(2)證明:函數(shù)上單調(diào)遞增;
(3)當(dāng)時(shí),
①解不等式;
②求函數(shù)上的值域.

(1)  (2) 設(shè),則, ∴函數(shù)上單調(diào)遞增(3) ①

解析試題分析:(1)∵對(duì)于任意的恒有成立.
∴令,得:2分
(2)設(shè),則      4分

7分
∴函數(shù)上單調(diào)遞增             8分
(3)①∵對(duì)于任意的恒有成立.
     
又∵,
等價(jià)于,    10分
解得:    12分
∴所求不等式的解集為

由①得:
由(2)得:函數(shù)上單調(diào)遞增
故函數(shù)上單調(diào)遞增      13分
,  15分
∴函數(shù)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/68/9/1vhuj4.png" style="vertical-align:middle;" />   16分
考點(diǎn):抽象函數(shù)單調(diào)性及值域
點(diǎn)評(píng):第一問抽象函數(shù)求值關(guān)鍵是對(duì)自變量合理賦值,第二問判定其單調(diào)性需通過(guò)定義:在下比較的大小關(guān)系,第三問解不等式,求函數(shù)值域都需要結(jié)合單調(diào)性將抽象函數(shù)轉(zhuǎn)化為具體函數(shù),利用單調(diào)性找到最值點(diǎn)的位置

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上的增函數(shù),,
(Ⅰ)若,求證:;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)a=l時(shí),求函數(shù)的極值;
(2)當(dāng)a2時(shí),討論函數(shù)的單調(diào)性;
(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若是偶函數(shù),在定義域上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),令,問是否存在實(shí)數(shù),使上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)討論的奇偶性;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值 ;
(3)數(shù)列滿足,求的整數(shù)部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/7/19h3k2.png" style="vertical-align:middle;" />
(1)求的值;
(2)若關(guān)于的函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
①當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案