已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx+1(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求當x∈(0,
π
2
]時f(x)的值域.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的求值
分析:(1)由條件利用三角恒等變換化簡函數(shù)的解析式為f(x)=sin(2ωx+
π
6
)+
3
2
,由此根據(jù)周期為π求得ω的值.
(2)當x∈(0,
π
2
]時,利用正弦函數(shù)的定義域和值域求得f(x)的值域.
解答: 解:(1)f(x)=
3
sinωxcosωx+
1+cos2ωx
2
+1=
3
2
sin2ωx+
1
2
cos2ωx+
3
2
=sin(2ωx+
π
6
)+
3
2

∵ω>0,∴T=
ω
=π,∴ω=2.
(2)由(1)得:f(x)=sin(2ωx+
π
6
)+
3
2
,∵0<x≤
π
2
,∴
π
6
<2x+
π
6
6
,
∴-
1
2
≤sin(2x+
π
6
)≤1,∴1≤f(x)≤
5
2
,即f(x)的值域是[1,
5
2
].
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的周期性、定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是AA1,A1D1,A1B1,BB1的中點,則異面直線EF與GH所成的角的大小為( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(1+2x28;        
(2)y=
1
1-x2
;
(3)y=sin 2x-cos 2x;      
(4)y=cos x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AB=2,C=2
2
,CD=7;且∠B=45°,∠C=105°,
(1)求∠BAC;  
(2)求邊AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x-4=0一條斜率等于1的直線l與圓C交于A,B兩點,
(1)求弦AB最長時直線l的方程;
(2)求△ABC面積最大時直線l的方程;
(3)若坐標原點O在以AB為直徑的圓內(nèi),求直線l在y軸上的截距范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程2x2-(
3
+1)x+2m=0的兩根為sinθ和cos θ(θ∈(0,π)),求:
(1)m的值;
(2)
sinθ
1-cotθ
+
cosθ
1-tanθ
的值(其中cot θ=
1
tanθ
 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α=-1910°.
(1)把角α寫成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第幾象限的角;
(2)求出θ的值,使θ與α的終邊相同,且-720°≤θ<0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC和平行四邊形OA1B1C1的部分頂點坐標為:A(-1,0),B(-1,2),A1
1
2
,1),C1(2,0).
(Ⅰ)求將矩形OABC變?yōu)槠叫兴倪呅蜲A1B1C1的線性變換對應(yīng)的矩陣M;
(Ⅱ)矩陣M是否存在特征值?若存在,求出矩陣M的所有特征值及其對應(yīng)的一個特征向量;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(-3,2),
當k=
 
時,(1)k
a
+
b
a
-3
b
垂直;
當k=
 
時,(2)k
a
+
b
a
-3
b
平行.

查看答案和解析>>

同步練習(xí)冊答案