已知關于x的方程2x2-(
3
+1)x+2m=0的兩根為sinθ和cos θ(θ∈(0,π)),求:
(1)m的值;
(2)
sinθ
1-cotθ
+
cosθ
1-tanθ
的值(其中cot θ=
1
tanθ
 ).
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:(1)利用根與系數(shù)的關系列出關系式,變形即可求出m的值;
(2)原式利用同角三角函數(shù)間基本關系化簡,將sinθ+cosθ的值代入計算即可求出值.
解答: 解:(1)由根與系數(shù)的關系可知,sinθ+cosθ=
3
+1
2
①,sinθ•cosθ=m②,
將①式平方得1+2sinθ•cosθ=
2+
3
2
,即sinθ•cosθ=
3
4
,
代入②得m=
3
4
;
(2)
sinθ
1-cotθ
+
cosθ
1-tanθ
=
sin2θ
sinθ-cosθ
+
cos2θ
cosθ-sinθ
=
sin2θ-cos2θ
sinθ-cosθ
=sinθ+cosθ=
3
+1
2
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列周期為
π
2
的函數(shù)為( 。
A、y=sin(2x+
π
6
B、y=2tan(x+
π
7
C、y=cos3x
D、y=tan2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠生產(chǎn)的洗衣機在東南亞銷量不錯,原計劃今年一季度產(chǎn)量逐月增長量相同.但實際情況一月份恰好完成計劃,二月份多生產(chǎn)了10臺,三月份多生產(chǎn)了25臺,結果造成一季度逐月產(chǎn)量增長率相同.且第三月產(chǎn)量比原計劃整個一季度的產(chǎn)量的一半少10臺.問原計劃一季度生產(chǎn)多少臺洗衣機,而實際生產(chǎn)了多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a6-a4=24,a3a5=64,求{an}的通項公式及前8項的和S8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx+1(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求當x∈(0,
π
2
]時f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+3x+1.
(Ⅰ)當a=1時,判斷f(x)的單調性,并求其單調區(qū)間;
(Ⅱ)若x∈(0,+∞)時,f'(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示).M為棱AC的中點.

(1)求證:AD⊥BC;
(2)當三棱錐A-BCD的體積最大時,求直線BM與面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校為了解學生身體發(fā)育情況,隨機從高一年級中抽取40人作樣本,測量出他們的身高(單位:cm),身高分組區(qū)間及人數(shù)見表:
 分組[155,160)[160,165)[165,170)[170,175)[175,180]
 人數(shù) a 8 14 b 2
(Ⅰ)求a、b的值并根據(jù)題目補全頻率分布直方圖;

(Ⅱ)在所抽取的40人中任意選取兩人,設Y為身高不低于170cm的人數(shù),求Y的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,曲線C1和C2的方程分別為ρ=2cosθ和ρ=1,以極點為平面直角坐標系的原點,極軸為x軸正半軸,建立平面直角坐標系,則曲線C1和C2交點所在的直線方程為
 

查看答案和解析>>

同步練習冊答案