設(shè)函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
(1)函數(shù)的最大值為;(2)實數(shù)的取值范圍是;(3).

試題分析:(1)將代入函數(shù)的解析式,利用導數(shù)求出函數(shù)的最大值;(2)先求出函數(shù)的解析式,利用導數(shù)將問題轉(zhuǎn)化為對任意恒成立的問題來處理,利用二次函數(shù)的最值的求法求的最大值,從而得到實數(shù)的取值范圍;(3)將問題等價轉(zhuǎn)化為函數(shù)在定義域上只有一個零點來處理,結(jié)合導數(shù)來研究函數(shù)的單調(diào)性,利用極值與最值的關(guān)系求出正數(shù)的值.
試題解析:(1)依題意,知的定義域為,
時,,      2分
令,解得
因為有唯一解,所以,當時,,此時單調(diào)遞增;
時,,此時單調(diào)遞減。
所以的極大值為,此即為最大值        4分
(2),則有上恒成立,
             
時,取得最大值,所以     8分
(3)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解,
設(shè),則,
因為所以(舍去),,
時,上單調(diào)遞減,
時,,上單調(diào)遞增,
時,取最小值.     10分
 即 
所以因為所以     12分
設(shè)函數(shù),因為當時,是增函數(shù),所以至多有一解.
,∴方程(*)的解為,即,解得   14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù),數(shù)列,滿足0<<1, ,數(shù)列滿足,
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:0<<1;
(Ⅲ)若,則當n≥2時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若無零點,求實數(shù)的取值范圍;
(3)若有兩個相異零點、,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線在點處的切線與兩條坐標軸圍成的三角形的面積為18,則 (   )
A.64 B.32 C.16D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足f(1)=1,且對任意x∈R都有,則不等式的解集為   ( 。
A.(1,2)B.(0,1)C.(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),當時,不等式
恒成立,則實數(shù)的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)是f(x)的導函數(shù),若,,則=           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),則函數(shù)的圖象在點處的切線方程是          .

查看答案和解析>>

同步練習冊答案