下列四個(gè)判斷:
①10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
②命題“若α>β,則tanα>tanβ”的逆命題為真命題;
③已知a>0,b>0,則由y=(a+b)(
1
a
+
4
b
)≥2
ab
•2
4
ab
⇒ymin=8;
④若命題“?x∈R,|x-a|+|x+1|≤2”是假命題,則命題“?x∈R,|x-a|+|x+1|>2”是真命題.
其中正確的個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:常規(guī)題型,簡(jiǎn)易邏輯
分析:對(duì)四個(gè)命題一一判斷,可得結(jié)果.
解答: 解:①a=
15+17+14+10+15+17+17+16+14+12
10
=14.7,b=15,c=17,故c>b>a;故錯(cuò)誤;
②α=45°,β=315°;此時(shí)tanα=1,tanβ=-1,tanα>tanβ,但α<β;故錯(cuò)誤;
③y=(a+b)(
1
a
+
4
b
)=1+4+
b
a
+
4a
b
≥5+2
b
a
4a
b
=9(當(dāng)且僅當(dāng)b=2a時(shí),等號(hào)成立);故錯(cuò)誤;
④命題“?x∈R,|x-a|+|x+1|≤2”是假命題,則其否定“?x∈R,|x-a|+|x+1|>2”是真命題,則命題“?x∈R,|x-a|+|x+1|>2”也是真命題.故④正確.
則正確的個(gè)數(shù)為:1.
故選:B.
點(diǎn)評(píng):本題考查了平均數(shù),眾數(shù),中位數(shù),三角函數(shù),基本不等式及命題等,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是( 。
A、f(x)=x3
B、f(x)=sinx
C、f(x)=
1
x
D、f(x)=-x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意向量
a
,
b
,下列命題中正確的是(  )
A、如果
a
b
滿足|
a
|>|
b
|,且
a
b
同向,則
a
b
B、|
a
+
b
|≤|
a
|+|
b
|
C、|
a
b
|>|
a
|•|
b
|
D、|
a
-
b
|>|
a
|-|
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
2x-y≤0
x+y-5≥0
y-4≤0
,設(shè)a=
y
x+1
,則實(shí)數(shù)a的最大值是( 。
A、2
B、
5
8
C、
4
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|2x>1},B={x|log2(x+1)>0},則A是B的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有 m、n為兩條不同的直線,α、β為兩個(gè)不同的平面,則下列命題中正確的命題是( 。
A、若 m?α,n?α,m∥β,n∥β,則 α∥β
B、若 m?α,n?β,α∥β,則 m∥n
C、若 m⊥α,m⊥n,則 n∥α
D、若 m∥n,n⊥α,則 m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈(0,1),則下列結(jié)論正確的是( 。
A、lgx>x 
1
2
>2x
B、2x>x 
1
2
>lgx
C、x 
1
2
>2x>lgx
D、2x>lgx>x 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)域D={(x,y)|x∈[-1,c],y∈[0,
1+c
2
]}上隨機(jī)取一個(gè)點(diǎn)P(x,y),落在
x-y+1≥0
x+y-c≤0
y≥0
所表示的可行域內(nèi)的概率值( 。
A、
1
4
B、
1
3
C、
1
2
D、與c的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,已知底面是邊長(zhǎng)為2的正方形,高為1,點(diǎn)E在B1B上,且滿足B1E=2EB.
(1)求證:D1E⊥A1C1;
(2)在棱B1C1上確定一點(diǎn)F,使A、E、F、D1四點(diǎn)共面,并求此時(shí)B1F的長(zhǎng);
(3)求幾何體ABED1D的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案