分析:(I)知通項(xiàng)與前n項(xiàng)和的關(guān)系,通過仿寫得到兩個(gè)等式,作差據(jù)和與項(xiàng)的關(guān)系求出項(xiàng)的遞推關(guān)系,據(jù)等差中項(xiàng)的方法得證.
(II)利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
解答:(Ⅰ):證明:∵
Sn=(n+1)(an+1)-1,∴
Sn+1=(n+2)(an+1+1)-1∴
an+1=Sn+1-Sn=[(n+2)(an+1+1)-(n+1)(an+1)]整理,得na
n+1=(n+1)a
n-1①
∴(n+1)a
n+2=(n+2)a
n+1-1②
②-①得:(n+1)a
n+2-na
n+1=(n+2)a
n+1-(n+1)a
n即(n+1)a
n+2-2(n+1)a
n+1+(n+1)a
n=0∴a
n+2-2a
n+1+a
n=0,
即a
n+2-a
n+1=a
n+1-a
n∴數(shù)列{a
n}是等差數(shù)列
(II)∵a
1=3,na
n+1=(n+1)a
n-1,
∴a
2=2a
1-1=5∴a
2-a
1=2,
即等差數(shù)列{a
n}的公差為2,
∴a
n=a
1+2(n-1)=2n+1,(n∈N
*)
點(diǎn)評(píng):本題考查由項(xiàng)與和的遞推關(guān)系求項(xiàng)的特定關(guān)系:通過仿寫作差;等差數(shù)列的通項(xiàng)公式.