【題目】給出下列五個(gè)命題:
①已知直線、和平面,若,,則;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線,則直線與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過的直線與橢圓交于、兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.
其中,正確命題的序號為_______.
【答案】④⑤
【解析】
利用線面平行的判定定理可判斷①的正誤;結(jié)合拋物線的定義及條件可判斷②的正誤;利用雙曲線漸近線的性質(zhì)可判斷③的正誤;利用反證法結(jié)合線面垂直的定義可判斷④的正誤;利用點(diǎn)差法可判斷⑤的正誤.
①線面平行的前提條件是直線,所以條件中沒有,所以①錯(cuò)誤;
②當(dāng)定點(diǎn)位于定直線上時(shí),此時(shí)點(diǎn)到軌跡為垂直于直線且以定點(diǎn)為垂足的直線,只有當(dāng)點(diǎn)不在直線時(shí),軌跡才是拋物線,所以②錯(cuò)誤;
③因?yàn)殡p曲線的漸近線方程為,當(dāng)直線與漸近線平行時(shí)直線與雙曲線只有一個(gè)交點(diǎn),當(dāng)直線與漸近線重合時(shí),沒有交點(diǎn),所以③錯(cuò)誤;
④若,,,且與不垂直,
假設(shè),由于,則,這與已知條件矛盾,假設(shè)不成立,則與不垂直,所以④正確;
⑤設(shè)、,中點(diǎn),則,,
把,分別代入橢圓方程,
得,兩式相減得,
整理得,即,所以⑤正確.
所以正確命題的序號為④⑤.
故答案為:④⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中一定正確的是( )
(注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生).
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中80前占3%以上
B.互聯(lián)網(wǎng)行業(yè)90后中,從事設(shè)計(jì)崗位的人數(shù)比從事市場崗位的人數(shù)要多
C.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個(gè)溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是拋物線的焦點(diǎn),、是上兩點(diǎn).若,且線段的中點(diǎn)到軸的距離等于.
(1)求的值;
(2)設(shè)直線與交于、兩點(diǎn)且在軸的截距為負(fù),過作的垂線,垂足為,若.
(i)證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ii)求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開為了了解哪些人更關(guān)注“兩會”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是.
(1)求圖中的值;現(xiàn)釆用分層抽樣在和中隨機(jī)抽取8名代表,從8人中仼選2人,求2人中至少有1個(gè)是“中老年人”的概率是多少?
(2)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
參考數(shù)據(jù)及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),討論的極值點(diǎn)個(gè)數(shù),并求出相應(yīng)極值;
(2)若,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個(gè)焦點(diǎn)分別為,離心率,短軸長為2.
(1)求橢圓的方程;
(2)點(diǎn)為橢圓上的一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn), 的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(a>b>0)過點(diǎn)E(,1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設(shè)M(x0,y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MN⊥AB于點(diǎn)N,直線l:x0x+2y0y﹣4=0,設(shè)過點(diǎn)A與x軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com