已知點(diǎn)P(x,y)是雙曲線
x2
a2
-
y2
b2
=1﹙a>0,b>0﹚上任意一點(diǎn),F(xiàn)2(c,0)是雙曲線的右焦點(diǎn),求|PF2|的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:據(jù)第二定義可得
|PF2|
x-
a2
x
=e
,可得|PF2|=ex-a,利用x≥a,即可求|PF2|的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
解答: 解:由題意,根據(jù)第二定義可得
|PF2|
x-
a2
x
=e
,
∴|PF2|=ex-a,
∵x≥a,
∴ex≥c,
∴|PF2|≥c-a,
即|PF2|的最小值為c-a,取得最小值時(shí)點(diǎn)P的坐標(biāo)(a,0).
點(diǎn)評(píng):本題考查雙曲線的定義與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2,b=
2
,c=1,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)xi∈N(i=1,2,3,4,5,6…),則滿足x1<x2<x3<x4<10的有序數(shù)組(x1,x2,x3,x4)的個(gè)數(shù)為(  )
A、126B、3024
C、210D、5040

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)和公比均為
1
4
的等比數(shù)列,設(shè)bn+2=3log 
1
4
an(n∈N*).?dāng)?shù)列{cn}滿足cn=an•bn
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列;
(Ⅱ)求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=x2(x-a),若?x∈[1,2],使不等式f(x)<-1成立,求參數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(1,2)是拋物線C:y2=2px(p>0)上一點(diǎn),經(jīng)過(guò)點(diǎn)B(5,-2)的直線l與拋物線C交于P,Q兩點(diǎn).
(Ⅰ)求證:
PA
QA
為定值;
(Ⅱ)若△APQ的面積為16
2
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):cos2
π
2
-α)-sin(α-2π)sin(π+α)-sin2(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

唐徠回中隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖,其中,上學(xué)所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方圖中的x的值;
(2)如果上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)住校,請(qǐng)估計(jì)學(xué)校600名新生中有多少名學(xué)生可以申請(qǐng)住校;
(3)學(xué)校規(guī)定上學(xué)時(shí)間在[0,20)的學(xué)生只能步行,上學(xué)時(shí)間在[20,40)的學(xué)生只能騎自行車(chē),現(xiàn)在用分層抽樣方法從[0,20)和[20,40)中抽取6名學(xué)生,再?gòu)倪@6名學(xué)生中任意抽取兩人,問(wèn)這兩人都騎自行車(chē)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)調(diào)查統(tǒng)計(jì),通過(guò)這兩條公路從城市甲到城市乙的200輛汽車(chē)所用時(shí)間的頻數(shù)分布如下表.
(Ⅰ)為進(jìn)行某項(xiàng)研究,從所用時(shí)間為12天的60輛汽車(chē)中隨機(jī)抽取6輛.
(i)若用分層抽樣的方法抽取,求從通過(guò)公路1和公路2的汽車(chē)中各抽取幾輛;
(ii)若從(i)的條件下抽取的6輛汽車(chē)中,再任意抽取兩輛汽車(chē),求這兩輛汽車(chē)至少有一輛通過(guò)公路1的概率.
所用的時(shí)間(天) 10 11 12 13
通過(guò)公路1的頻數(shù) 20 40 20 20
通過(guò)公路2的頻數(shù) 10 40 40 10
(Ⅱ)假設(shè)汽車(chē)A只能在約定日期(某月某日)的前11天出發(fā),汽車(chē)B只能在約定日期的前12天出發(fā).為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車(chē)A和汽車(chē)B應(yīng)如何選擇各自的路徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案