【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進(jìn)行了5次試驗,收集數(shù)據(jù)如下表:

加工零件個數(shù)x/

10

20

30

40

50

加工時間y/分鐘

64

69

75

82

90

經(jīng)檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,那么對于加工零件的個數(shù)x與加工時間y這兩個變量,下列判斷正確的是(  )

A. 成正相關(guān),其回歸直線經(jīng)過點(30,75)

B. 成正相關(guān),其回歸直線經(jīng)過點(30,76)

C. 成負(fù)相關(guān),其回歸直線經(jīng)過點(30,76)

D. 成負(fù)相關(guān),其回歸直線經(jīng)過點(30,75)

【答案】B

【解析】試題分析:根據(jù)表中所給的數(shù)據(jù),得到兩變量為正相關(guān),求出橫標(biāo)和縱標(biāo)的平均數(shù),得到樣本中心點,進(jìn)而得到結(jié)論.

解:由表格數(shù)據(jù)知,加工時間隨加工零件的個數(shù)的增加而增加,故兩變量為正相關(guān),

又由=30,=64+69+75+82+90=76,

故回歸直線過樣本中心點(30,76),

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計劃投資兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為(注:利潤與投資金額單位:萬元).

(1)該公司現(xiàn)有100萬元資金,并計劃全部投入兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)怎樣分配這100萬元資金,才能使公司的利潤總和獲得最大?其最大利潤總和為多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.

(1)求該拋物線的方程;

(2)是否存在直線,使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在今年的自主招生考試成績中隨機(jī)抽取 100 名考生的筆試成績,分為 5 組制出頻率分布直方圖如圖所示.

組號

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

(2)該校決定在成績較好的 、4、5 組用分層抽樣抽取 6 名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?

(3)在(2)的前提下,從抽到 6 名學(xué)生中再隨機(jī)抽取 2 名被甲考官面試,求這 2 名學(xué)生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線的焦點為,準(zhǔn)線與軸的交點為,過點的直線,拋物線相交于不同的兩點.

(1)若,求直線的方程;

(2)若點在以為直徑的圓外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中,側(cè)面與底面垂直,.

(1)求證:;

(2)設(shè),求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C為銳角△ABC的三個內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且
(1)求A的大。
(2)求y=2sin2B+cos( ﹣2B)取最大值時角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當(dāng)d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案