【題目】三棱錐中,側(cè)面與底面垂直,.

(1)求證:;

(2)設(shè),求與平面所成角的大小.

【答案】(1)證明見解析;(2)30°.

【解析】試題分析

(1)中點(diǎn),連結(jié),可得,根據(jù)側(cè)面與底面垂直可證得平面,再由,得,從而可得(2)為原點(diǎn)建立空間直角坐標(biāo)系,求出直線的方向向量和平面的法向量,用兩向量的坐標(biāo)表示出直線和平面所成角的正弦值,從而得到線面角的大。

試題解析

(1)證明:取中點(diǎn),連結(jié).

,

.

又已知知平面平面,平面平面,

平面,為垂足.

,

.

的外接圓直徑,

.

(2)解:以為原點(diǎn),的方向分別為軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系,

,

.

設(shè)為平面的一個(gè)法向量,

,得

,則.

設(shè)直線與平面所成的角為,

,

,

與平面所成的角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機(jī)詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,

22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )

A. 這種抽樣方法是分層抽樣

B. 這種抽樣方法是系統(tǒng)抽樣

C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差

D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,點(diǎn), 分別為線段, , 的中點(diǎn).

)證明平面;

)證明平面平面;

)在線段上找一點(diǎn),使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和.求:

I)求數(shù)列的通項(xiàng)公式;

II)求數(shù)列的前n項(xiàng)和

III)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中)的周期為,且圖象上一個(gè)最低點(diǎn)為

(1)求的解析式;

(2)當(dāng)時(shí),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】36的所有正約數(shù)之和可按如下方法得到:因?yàn)?6=22×32 , 所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可得100的所有正約數(shù)之和為( )
A.217
B.273
C.455
D.651

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A,B兩點(diǎn),連接PA并延長,交圓O于點(diǎn)C,連續(xù)PB交圓O于點(diǎn)D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 則下列結(jié)論正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案