【題目】36的所有正約數(shù)之和可按如下方法得到:因為36=22×32 , 所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可得100的所有正約數(shù)之和為( )
A.217
B.273
C.455
D.651

【答案】A
【解析】類比36的所有正約數(shù)之和的方法,有:100的所有正約數(shù)之和可按如下方法得到:因為100= ,所以100的所有正約數(shù)之和為(1+2+ )(1+5+ )=217,可求得100的所有正約數(shù)之和為217.

所以答案是:A.


【考點精析】認(rèn)真審題,首先需要了解類比推理(根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax. (Ⅰ)若函數(shù)f(x)在x=1處的切線斜率為2,求實數(shù)a;
(Ⅱ)若a=1,求函數(shù)f(x)在區(qū)間[0,3]的最值及所對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為: ,直線的方程為

)當(dāng)時,求直線被圓截得的弦長

)當(dāng)直線被圓截得的弦長最短時,求直線的方程

)在()的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為,求點的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是對數(shù)函數(shù).

(1) 若函數(shù),討論的單調(diào)性;

(2),不等式的解集非空,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中,側(cè)面與底面垂直,.

(1)求證:;

(2)設(shè),求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) , ,(a>0).若對任意實數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓的直徑為, 為直徑延長線上的一點, , 為半圓上任意一點,以為一邊作等邊三角形,設(shè) .

(1)當(dāng)為何值時,四邊形面積最大,最大值為多少;

(2)當(dāng)為何值時, 長最大,最大值為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

1)補全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[20,30)的員工數(shù);

2)在日銷量為[10,30)的員工中隨機(jī)抽取2人,求這兩名員工日銷量在 [20,30)的概率.

查看答案和解析>>

同步練習(xí)冊答案