【題目】設(shè)函數(shù)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在極值,對(duì)于任意的0<x1<x2 , 存在正實(shí)數(shù)x0 , 使得f(x1)﹣f(x2)=f'(x0)(x1﹣x2),試判斷x1+x2與2x0的大小關(guān)系并給出證明.

【答案】解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),
f′(x)= ﹣ax+(4﹣a)=﹣
當(dāng)a≤0時(shí),則f′(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a>0時(shí),則由f′(x)=0得,x= ,x=﹣1(舍去);
當(dāng)x∈(0, )時(shí),f′(x)>0,當(dāng)x∈( ,+∞)時(shí),f′(x)<0;
所以f(x)在(0, )上單調(diào)遞增,在( ,+∞)上單調(diào)遞減;
綜上所述,當(dāng)a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a>0時(shí),f(x)在(0, )上單調(diào)遞增,在( ,+∞)上單調(diào)遞減.
(Ⅱ)由(Ⅰ)知,當(dāng)a>0時(shí),f(x)存在極值.
f(x1)﹣f(x2)=4(lnx1﹣lnx2)﹣ a(x1+x2)(x1﹣x2)+(4﹣a)(x1﹣x2),
由題設(shè)得f′(x0)= = a(x1+x2)+(4﹣a),
又f′( )= ﹣a +4﹣a,
所以f′(x0)﹣f′( )= ,
設(shè)t= ,則t>1,則 =lnt﹣ (t>1),
令g(t)=lnt﹣ (t>1),則g′(t)= >0,
所以g(t)在(1,+∞)上單調(diào)遞增,
所以g(t)>g(1)=0,故 >0,
又因?yàn)閤2﹣x1>0,因此f′(x0)﹣f′( )>0,即f′( )<f′(x0),
又由f′(x) ﹣ax+(4﹣a)知f′(x)在(0,+∞)上單調(diào)遞減,
所以 >x0 , 即x1+x2>2x0
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)分別計(jì)算f′(x0)和f′( ),作差得到f′(x0)﹣f′( )= ,設(shè)t= ,則t>1,得到關(guān)于t的函數(shù),根據(jù)函數(shù)的單調(diào)性判斷即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a<0,(x2+2017a)(x+2016b)≥0在(a,b)上恒成立,則b﹣a的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標(biāo)原點(diǎn)(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程

(2)設(shè),計(jì)算的導(dǎo)數(shù).

【答案】(1).(2).

【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點(diǎn)斜式寫出切線方程;(2), .

試題解析:

(1),則,

,∴所求切線方程為,.

(2), .

型】解答
結(jié)束】
18

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下

1)求出表中及圖中的值;

2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和Sn滿足 ,且a1 , a2+6,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件求圓的方程.

, ,三角形的外接圓.

)圓心在直線上,且與直線相切于點(diǎn)

)與軸相切,圓心在直線上,且被直線截得的弦長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是(  )

A. (x-5)2+(y+7)2=25

B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15

C. (x-5)2+(y+7)2=9

D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況通過隨機(jī)抽樣,電力公司獲得了50戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖如圖所示).

(1)求a,b的值;

(2)為了解用電量較大的用戶用電情況,在第5、6兩組用分層抽樣的方法選取5

求第5、6兩組各取多少戶?

若再從這5戶中隨機(jī)選出2戶進(jìn)行入戶了解用電情況,求這2戶中至少有一戶月平均用電量在[1000,1200]范圍內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)x,y滿足 ,則目標(biāo)函數(shù)2x+y的最大值為 , 目標(biāo)函數(shù)4x2+y2的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案