【題目】設(shè)a<0,(x2+2017a)(x+2016b)≥0在(a,b)上恒成立,則b﹣a的最大值為

【答案】2017
【解析】解:∵(x2+2017a)(x+2016b)≥0在(a,b)上恒成立, ∴x2+2017a≥0,x+2016b≥0或x2+2017a≤0,x+2016b)≤0成立,
①若x+2016b≥0在(a,b)上恒成立,則a+2016b≥0,即b
此時(shí)當(dāng)x=0時(shí),x2+2017a=2017a≥0不成立;
②若x+2016b≤0在(a,b)上恒成立,則b+2016b≤0,即b≤0,若x2+2017a≤0在(a,b)上成立,
則a2+2017a≤0,即﹣2017≤a<0.
故b﹣a的最大值為2017.
所以答案是:2017.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面是菱形的四棱錐P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,點(diǎn)E為棱PB的中點(diǎn),點(diǎn)F在棱AD上,平面CEF與PA交于點(diǎn)K,且PA=AB=3,AF=2,則點(diǎn)K到平面PBD的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:axby+4=0,l2:(a1)x+y+b=0. 求滿足下列條件的a,b值.

)l1l2且l1過點(diǎn)(3,1);

)l1l2且原點(diǎn)到這兩直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?;若兩數(shù)之和為奇數(shù),則乙先停靠,這種規(guī)則是否公平?請(qǐng)說明理由.

(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請(qǐng)求出甲船先?康母怕

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為 )的離心率為 ,圓的方程為 ,若橢圓與圓 相交于 , 兩點(diǎn)且線段 恰好為圓 的直徑.

(1)求直線 的方程;

2求橢圓 的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點(diǎn).
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點(diǎn)P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立.

(1)函數(shù)是否屬于集合M?說明理由;

(2)設(shè)函數(shù),求的取值范圍;

(3)已知函數(shù)圖象與函數(shù)的圖象有交點(diǎn),根據(jù)該結(jié)論證明:函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在極值,對(duì)于任意的0<x1<x2 , 存在正實(shí)數(shù)x0 , 使得f(x1)﹣f(x2)=f'(x0)(x1﹣x2),試判斷x1+x2與2x0的大小關(guān)系并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案