【題目】已知二次函數(shù)滿足以下兩個條件:①不等式的解集是②函數(shù)上的最小值是3.

(Ⅰ)求的解析式;

(Ⅱ)若點在函數(shù)的圖象上,且.

(。┣笞C:數(shù)列為等比數(shù)列

(ⅱ)令,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.

【答案】(Ⅰ);(Ⅱ)(ⅰ)證明過程見解析;(ⅱ)

【解析】

(Ⅰ)根據(jù)不等式的解集可知函數(shù)x軸的交點橫坐標(biāo)為,0且開口向上,根據(jù)對稱軸判斷函數(shù)在上的最小值列出等式求解即可;(Ⅱ)(ⅰ)點代入函數(shù)并整理得,同時取對數(shù)即可得證;(ⅱ)求出的通項公式代入不等式可得對于一切的恒成立,利用二次函數(shù)的圖象與性質(zhì)求出的最大值即可得解.

(Ⅰ)因為不等式的解集是,

所以設(shè),且函數(shù)的對稱軸為:

因為上單調(diào)遞增,所以最小值為,解得

函數(shù)解析式為

(Ⅱ)(。┳C明:因為點在函數(shù)的圖象上,

所以,則,,

因為,所以

數(shù)列是以2為首項,2為公比的等比數(shù)列;

(ⅱ),要使不等式對于一切的恒成立,

對于一切的恒成立,

所以對于一切的恒成立,

,

,則,(),,

所以當(dāng)時, 不等式對于一切的恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若曲線上的動點到直線的最大距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,,點、分別為的中點.

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若圓的任意一條切線與橢圓E相交于P,Q兩點,試問: 是否為定值? 若是,求這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射擊一次,命中不足8環(huán)的概率;

(2)求甲射擊一次,至少命中7環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點, 上的任意一點.

(1)求的取值范圍;

(2)上異于的兩點,若直線與直線的斜率之積為,證明: 兩點的橫坐標(biāo)之和為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的圖像在點處的切線方程;

(2)當(dāng)時,函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案