【題目】已知函數(shù).

(1)討論函數(shù)的單調區(qū)間;

(2)若存在兩個不相等的正數(shù),,滿足,證明:.

【答案】1)見解析;(2)證明見解析

【解析】

1)先求導可得,解得,,的定義域為,分別討論時的情況即可;

2)由(1)可判定當存在兩個不相等的正數(shù),,滿足,,

,利用導函數(shù)可判斷當,,設設,,,代入可得,可得,根據(jù)的單調性可得,,利用其即可證明

1)由題,函數(shù)的定義域為,

,

,,解得,,

,,,所以上單調遞增;

,,,,所以上單調遞減,上單調遞增

2)證明:由(1,,上單調遞增,則不存在兩個不相等的正數(shù),,滿足,所以,

,

,

,解得,

所以當,,所以上單調遞減;

,,所以上單調遞增,

所以,

所以當,,

即當,,

由(1)得上單調遞減,上單調遞增,

不妨設,,,

所以,

又因為,所以,

因為,所以,,

因為,,,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中e為自然對數(shù)的底).

1)若上單調遞增,求實數(shù)a的取值范圍;

2)若,證明:存在唯一的極小值點,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的左、右焦點分別是,,點的上頂點,點上,,且.

1)求的方程;

2)已知過原點的直線與橢圓交于兩點,垂直于的直線且與橢圓交于,兩點,若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,解關于的方程(其中為自然對數(shù)的底數(shù));

2)求函數(shù)的單調增區(qū)間;

3)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由. (參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新疆在種植棉花有著得天獨厚的自然條件,土質呈堿性,夏季溫差大,陽光充足,光合作用充分,生長時間長,這種環(huán)境下種植的棉花絨長品質好產(chǎn)量髙,所以新疆棉花舉世聞名.每年五月份,新疆地區(qū)進入災害天氣高發(fā)期,災害天數(shù)對當年棉花產(chǎn)量有著重要影響,根據(jù)過去五年的數(shù)據(jù)統(tǒng)計,得到相關數(shù)據(jù)如下表:

災害天氣天數(shù)()

2

3

4

5

8

棉花產(chǎn)量(/公頃)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術人員分別借助甲乙兩種不同的回歸模型,得到兩個回歸方程,

方程甲:,方程乙:.

1)為了評價兩種模型的擬合效果,完成以下任務: 完成下表;(計算結果精確到0.1)

②分別計算模型甲與模型乙的殘差平方和,并比鉸的大小,判斷哪個模型擬合效果更好?

災害天氣天數(shù)()

2

3

4

5

8

棉花產(chǎn)量(噸公頃)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

2)根據(jù)天氣預報,今年五月份新疆市災害天氣是6天的概率是0.5,災害天氣是7天的概率為0.4,災害天氣是10天的概率為0.1,若何女士在新疆市承包了15公頃地種植棉花,請你根據(jù)第(1)問中擬合效果較好的模型估計一下何女士今年棉花的產(chǎn)量.(計算過程中所有結果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶市的新高考模式為,其中“3”是指語文、數(shù)學、外語三門必步科目:“1”是指物理、歷史兩門科目必選且只選一門;“2”是指在政治、地理、化學、生物四科中必須任選兩門,這樣學生的選科就可以分為兩類:物理類與歷史類,比如物理類有:物理+化學+生物,物理+化學+地理,物理+化學+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重慶某中學高一學生共1200人,其中男生650人,女生550人,為了適應新高考,該校高一的學生在3月份進行了的選科,選科情況部分數(shù)據(jù)如下表所示:(單位:人)

性別

物理類

歷史類

合計

男生

590

女生

240

合計

900

1)請將題中表格補充完整,并判斷能否有99%把握認為是否選擇物理類與性別有關?

2)已知高一9班和10班選科結果都只有四種組合:物理+化學+生物,物理+化學+地理,政治+歷史+地理,政治+歷史+生物.現(xiàn)用數(shù)字1,2,3,4依次代表這四種組合,兩個班的選科數(shù)據(jù)如下表所示(單位:人).

理化生

理化地

政史地

政史生

班級總人數(shù)

9

18

18

12

12

60

10

24

12

18

6

60

現(xiàn)分別從兩個班各選一人,記他們的選科結果分別為,令,用頻率代表概率,求隨機變量的分布列和期望.(參考數(shù)據(jù):,,

附:;

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關注,還得到了無數(shù)外國人的關注.某單位有6位外國人,其中關注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】無窮數(shù)列滿足:,且對任意正整數(shù),為前,,…,中等于的項的個數(shù).

1)直接寫出,,,

2)求證:該數(shù)列中存在無窮項的值為1;

3)已知,求.

查看答案和解析>>

同步練習冊答案