【題目】重慶市的新高考模式為,其中“3”是指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門必步科目:“1”是指物理、歷史兩門科目必選且只選一門;“2”是指在政治、地理、化學(xué)、生物四科中必須任選兩門,這樣學(xué)生的選科就可以分為兩類:物理類與歷史類,比如物理類有:物理+化學(xué)+生物,物理+化學(xué)+地理,物理+化學(xué)+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重慶某中學(xué)高一學(xué)生共1200人,其中男生650人,女生550人,為了適應(yīng)新高考,該校高一的學(xué)生在3月份進(jìn)行了的選科,選科情況部分?jǐn)?shù)據(jù)如下表所示:(單位:人)

性別

物理類

歷史類

合計(jì)

男生

590

女生

240

合計(jì)

900

1)請(qǐng)將題中表格補(bǔ)充完整,并判斷能否有99%把握認(rèn)為是否選擇物理類與性別有關(guān)?

2)已知高一9班和10班選科結(jié)果都只有四種組合:物理+化學(xué)+生物,物理+化學(xué)+地理,政治+歷史+地理,政治+歷史+生物.現(xiàn)用數(shù)字1,2,34依次代表這四種組合,兩個(gè)班的選科數(shù)據(jù)如下表所示(單位:人).

理化生

理化地

政史地

政史生

班級(jí)總?cè)藬?shù)

9

18

18

12

12

60

10

24

12

18

6

60

現(xiàn)分別從兩個(gè)班各選一人,記他們的選科結(jié)果分別為,令,用頻率代表概率,求隨機(jī)變量的分布列和期望.(參考數(shù)據(jù):,

附:;

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

【答案】(1)表格見解析,有99%把握認(rèn)為是否選擇物理類與性別有關(guān);(2)分布列見解析,

【解析】

1)根據(jù)總?cè)藬?shù)和表格中已有數(shù)據(jù),填寫完成表格,計(jì)算出,結(jié)合表格中的已知數(shù)據(jù),做出判斷;(2)先的取值分別為0,1,2,3,再計(jì)算出每種取值的概率,列出分布列,計(jì)算出期望.

1)根據(jù)物理類總?cè)藬?shù)900人,其中男生590人,可得女生為310人,

根據(jù)總?cè)藬?shù)1200人,得到歷史類總?cè)藬?shù)300人,其中女生240人,可得男生60人.

完成表格如下:

性別

物理類

歷史類

合計(jì)

男生

590

60

650

女生

310

240

550

合計(jì)

900

300

1200

所以

所以,有99%把握認(rèn)為是否選擇物理類與性別有關(guān)“.

2的取值分別為0,1,2,3

的分布列為:

0

1

2

3

0.26

0.39

0.24

0.11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽(yáng)舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過(guò)1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過(guò)輪投球,用表示經(jīng)過(guò)第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.

①求

②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若存在兩個(gè)不相等的正數(shù),,滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線與拋物線有兩個(gè)不同的交點(diǎn),且直線軸于點(diǎn),直線軸于點(diǎn)

1)求直線的斜率的取值范圍;

2)設(shè)為原點(diǎn),,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三年級(jí)有男生人,編號(hào)為,,;女生人,編號(hào)為,,.為了解學(xué)生的學(xué)習(xí)狀態(tài),按編號(hào)采用系統(tǒng)抽樣的方法從這名學(xué)生中抽取人進(jìn)行問(wèn)卷調(diào)查,第一組抽到的號(hào)碼為,現(xiàn)從這名學(xué)生中隨機(jī)抽取人進(jìn)行座談,則這人中既有男生又有女生的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在等腰梯形中,,中點(diǎn).為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖(2.

1)求證:

2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案