【題目】甲、乙兩名射手在一次射擊中得分為兩個相互獨立的隨機變量ξ,η,已知甲、乙兩名射手在每次射擊中射中的環(huán)數(shù)大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學期望與方差,并以此比較甲、乙的射擊技術.
【答案】(1)見解析.
(2) 甲比乙的射擊技術好.
【解析】
(1)由題意利用題中的條件已知甲、乙兩名射手每次射擊中的環(huán)數(shù)大于環(huán),且甲射中環(huán)的概率分別為,可以得到,解出的值,再有隨機變量的意義得到相應的分布列;(2)由于(1)中求得了隨機變量的分布列,利用期望與方差公式求出期望與方差可得甲射擊的環(huán)數(shù)的均值比乙高,且成績比較穩(wěn)定,所以甲比乙的射擊技術好.
(1)由題意得:0.5+3a+a+0.1=1,解得a=0.1.
因為乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2,所以乙射中7環(huán)的概率為1-(0.3+0.3+0.2)=0.2.
所以ξ,η的分布列分別為:
ξ | 10 | 9 | 8 | 7 |
P | 0.5 | 0.3 | 0.1 | 0.1 |
η | 10 | 9 | 8 | 7 |
P | 0.3 | 0.3 | 0.2 | 0.2 |
(2)由(1)得:
E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2;
E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;
D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;
D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.
由于E(ξ)>E(η),D(ξ)<D(η),說明甲射擊的環(huán)數(shù)的均值比乙高,且成績比較穩(wěn)定,所以甲比乙的射擊技術好.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中,若存在ak , 使得“ak>ak﹣1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個H值.現(xiàn)有如下數(shù)列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,則存在H值的數(shù)列有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高職院校進行自主招生文化素質考試,考試內(nèi)容為語文、數(shù)學、英語三科,總分為200分.現(xiàn)從上線的考生中隨機抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計算上線考生中抽取的男生成績的方差;(結果精確到小數(shù)點后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 過點 ,且與 的交于 , .
(1) 用 表示 , 的橫坐標;
(2)設以 為焦點,過點 , 且開口向左的拋物線的頂點坐標為 ,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結論:
①從中任取3球,恰有一個白球的概率是;
②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;
③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;
④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.
其中所有正確結論的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣alnx,其中a>0,x>0,e是自然對數(shù)的底數(shù). (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設函數(shù)g(x)= ,證明:0<g(x)<1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“”的否定是“”
B. “在上恒成立”“在上恒成立”
C. 命題“已知,若,則或”是真命題
D. 命題“若,則函數(shù)只有一個零點”的逆命題為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com