在△ABC中,|
AB
|=2,|
AC
|=1,已知D是BC邊上一點(diǎn),AD平分∠BAC,
AD
AB
AC
則( 。
A、λ=
2
5
,μ=
3
5
B、λ=
3
5
,μ=
2
5
C、λ=
1
3
,μ=
2
3
D、λ=
2
3
,μ=
1
3
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:根據(jù)已知條件AD平分∠BAC知道∠BAD=∠CAD,而根據(jù)向量夾角的余弦公式可得:
AB
AD
|
AB
||
AD
|
=
AC
AD
|
AC
||
AD
|
,所以便得到
AB
AD
=2
AC
AD
,所以帶入
AD
AB
AC
并整理可得,(μ-2λ)
AB
AC
=2(μ-2λ)
,容易說(shuō)明μ-2λ=0,從而得到μ=2λ,而符合這個(gè)條件的只有C.
解答: 解:如圖,cos∠BAD=cos∠CAD,cos∠BAD=
AB
AD
|
AB
||
AD
|
,cos∠CAD=
AC
AD
|
AC
||
AD
|

AB
AD
2
=
AC
AD

AB
AD
=2
AC
AD
;
AD
AB
AC

AB
•(λ
AB
AC
)=2
AC
•(λ
AB
AC
)
;
∴4λ
AB
AC
=
AC
AB
+2μ

(μ-2λ)
AB
AC
=2(μ-2λ)
;
若μ-2λ≠0,則
AB
AC
=2cos∠BAC=2

∴∠BAC=0°,與已知△ABC矛盾;
∴μ-2λ=0,即μ=2λ;
而符合μ=2λ的只有C.
故選C.
點(diǎn)評(píng):考查向量夾角的余弦公式,以及向量的數(shù)量積的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg(1-x)的定義域?yàn)椋ā 。?/div>
A、[0,1]
B、(-1,+∞)
C、[-1,1]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,空間四邊形ABCD中,E、H為AB、AD的中點(diǎn),G、F為BC、CD上的點(diǎn),且
CF
CB
=
CG
CD

(Ⅰ)證明:EH∥BD;
(Ⅱ)若FE∩GH=M,判斷點(diǎn)M是否在直線AC上,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在2014-2015賽季的CBA(中國(guó)職業(yè)籃球)常規(guī)賽中,甲、乙兩隊(duì)要進(jìn)行三場(chǎng)比賽,在三場(chǎng)比賽中,甲隊(duì)兩個(gè)主場(chǎng)一個(gè)客場(chǎng),乙隊(duì)一個(gè)主場(chǎng)兩個(gè)客場(chǎng),按以往多年的比賽統(tǒng)計(jì),兩隊(duì)主客場(chǎng)的勝負(fù)概率如下表,按照比賽規(guī)定,每場(chǎng)勝隊(duì)得2分,負(fù)隊(duì)得1分(比賽結(jié)果只有勝負(fù)兩種可能,如果出現(xiàn)平局時(shí)就加時(shí),直至分出勝負(fù)為止),設(shè)甲、乙兩隊(duì)最后所得的總分分別為ξ、η,且ξ+η=9.
主客場(chǎng)甲隊(duì)勝乙隊(duì)勝
甲對(duì)主場(chǎng) 
2
3
 
1
3
乙隊(duì)主場(chǎng) 
1
3
 
2
3
(1)甲隊(duì)得5分的概率;
(2)求ξ的分布列,并用統(tǒng)計(jì)學(xué)知識(shí)說(shuō)明兩個(gè)隊(duì)的實(shí)力情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}公差不為零,前n項(xiàng)和為Sn,且a1、a2、a5成等比數(shù)列,S5=2a4+4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an•(
1
3
n,求數(shù)列{bn}前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1=b1=1且a2=b1+1,a3=b3+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,求滿足Sn-
an+1
n
>100的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1,x≤1
f(x-1)+1,x>1
,把函數(shù)f(x)的圖象與直線y=x交點(diǎn)的橫坐標(biāo)按從小到大的順序排列成一個(gè)數(shù)列,則該數(shù)列的前10項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x
1
3
+log
1
3
2-ax
x-2
為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)當(dāng)x∈(3,4]時(shí),f(x)是否存在最大值?若存在,求出最大值,若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)函數(shù)g(x)=x
1
3
+(
1
2
)x
+m,當(dāng)m為何值時(shí),不等式f(x)>g(x)在x∈(3,4]有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:平行于三棱錐的兩條相對(duì)棱的平面截三棱錐所得的截面是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案