【題目】已知以點C為圓心的圓經(jīng)過點A(﹣1,0)和B(3,4),且圓心在直線x+3y﹣15=0上.
(1)求圓C的方程;
(2)設(shè)點P在圓C上,求△PAB的面積的最大值.

【答案】
(1)解:依題意,所求圓的圓心C為AB的垂直平分線和直線x+3y﹣15=0的交點,

∵AB中點為(1,2)斜率為1,

∴AB垂直平分線方程為y﹣2=(x﹣1)即y=﹣x+3

聯(lián)立 ,解得 ,即圓心(﹣3,6),

半徑

∴所求圓方程為(x+3)2+(y﹣6)2=40


(2)解: ,

圓心到AB的距離為

∵P到AB距離的最大值為

∴△PAB面積的最大值為


【解析】(1)依題意,所求圓的圓心C為AB的垂直平分線和直線x+3y﹣15=0的交點,求出圓心與半徑,即可求圓C的方程;(2)求出|AB|,圓心到AB的距離d,求出P到AB距離的最大值d+r,即可求△PAB的面積的最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,對人體健康和大氣環(huán)境質(zhì)量的影響很大.我國標準采用世衛(wèi)組織設(shè)定的最寬限值.即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米以上空氣質(zhì)量為超標.

某市環(huán)保局從360天的市區(qū)監(jiān)測數(shù)據(jù)中統(tǒng)計了1月至10月的每月的平均值(單位:微克/立方米),如下表所示.

月份

1

2

3

4

5

6

7

8

9

10

月均值

32

28

25

31

34

33

45

44

63

68

(1)從5月到10月的這6個數(shù)據(jù)中任取2個數(shù)值,求這個2個數(shù)值均為二級的概率;

(2)求月均值關(guān)于月份的回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,A=450,AB=,BC=2,求解此三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面 分別為棱的中點.

(1)求證: 平面;

2)(文科)求三棱錐的體積;

(理科)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓過兩點, ,且圓心在直線.

1)求圓的標準方程;

2)直線過點且與圓有兩個不同的交點,若直線的斜率大于0,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=x2+2mx+
(1)用定義法證明f(x)在R上是增函數(shù);
(2)求出所有滿足不等式f(2a﹣a2)+f(3)>0的實數(shù)a構(gòu)成的集合;
(3)對任意的實數(shù)x1∈[﹣1,1],都存在一個實數(shù)x2∈[﹣1,1],使得f(x1)=g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,C、D是以AB為直徑的圓上兩點,AB=2AD=2 ,AC=BC,F(xiàn) 是AB上一點,且AF= AB,將圓沿直徑AB折起,使點C在平面ABD的射影E在BD上,已知CE=

(1)求證:AD⊥平面BCE;
(2)求證:AD∥平面CEF;
(3)求三棱錐A﹣CFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形四點坐標為A(0,-2),C(4,2),B(4,-2),D(0,2).

(1)求對角線所在直線的方程;

(2)求矩形外接圓的方程;

(3)若動點為外接圓上一點,點為定點,問線段PN中點的軌跡是什么,并求出該軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案