【題目】如圖,C、D是以AB為直徑的圓上兩點,AB=2AD=2 ,AC=BC,F(xiàn) 是AB上一點,且AF= AB,將圓沿直徑AB折起,使點C在平面ABD的射影E在BD上,已知CE=

(1)求證:AD⊥平面BCE;
(2)求證:AD∥平面CEF;
(3)求三棱錐A﹣CFD的體積.

【答案】
(1)證明:依題AD⊥BD,

∵CE⊥平面ABD,∴CE⊥AD,

∵BD∩CE=E,

∴AD⊥平面BCE


(2)證明:Rt△BCE中,CE= ,BC= ,∴BE=2,

Rt△ABD中,AB=2 ,AD= ,∴BD=3.

∴AD∥EF,∵AD在平面CEF外,

∴AD∥平面CEF


(3)解:由(2)知AD∥EF,AD⊥ED,

且ED=BD﹣BE=1,

∴F到AD的距離等于E到AD的距離為1.

∴SFAD= =

∵CE⊥平面ABD,

∴VACFD=VC﹣AFD= = =


【解析】(1)依題AD⊥BD,CE⊥AD,由此能證明AD⊥平面BCE.(2)由已知得BE=2,BD=3.從而AD∥EF,由此能證明AD∥平面CEF.(3)由VACFD=VC﹣AFD,利用等積法能求出三棱錐A﹣CFD的體積.
【考點精析】認真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行),還要掌握直線與平面垂直的判定(一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過噸、噸、噸,如果產(chǎn)品的利潤為元/噸, 產(chǎn)品的利潤為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2
(1)若α為第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]內(nèi)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點C為圓心的圓經(jīng)過點A(﹣1,0)和B(3,4),且圓心在直線x+3y﹣15=0上.
(1)求圓C的方程;
(2)設(shè)點P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,

(1)當P在圓上運動時,求點M的軌跡C的方程;

(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖半圓柱的底面半徑和高都是1,面是它的軸截面(過上下底面圓心連線的平面),分別是上下底面半圓周上一點.

(1)證明:三棱錐體積,并指出滿足什么條件時有

(2)求二面角平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)當時,比較為自然對數(shù)的底數(shù))的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中,隨機抽取名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖

(1)求出表中的的值,并補全頻率分布直方圖;

(2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在的選取2名擔任主要發(fā)言人.記這2名主要發(fā)言人年齡在的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面四邊形是直角梯形,其中.

(Ⅰ)求證:直線平面;

(Ⅱ)試求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案