【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

【答案】(1)沒有的把握認為“微信控”與“性別”有關(guān);(2);(3.

【解析】試題分析:(1)利用列聯(lián)表,計算K2,對照數(shù)表得出概率結(jié)論;

(2)利用分層抽樣原理計算從女性中選出5人時微信控非微信控人數(shù);

(3)利用列舉法計算基本事件數(shù),求出對應(yīng)的概率值.

試題解析:

1由列聯(lián)表可得

所以沒有的把握認為“微信控”與“性別”有關(guān)

2)根據(jù)題意所抽取的位女性中,“微信控”有人,“非微信控”有

3)抽取的位女性中,“微信控”人分別記為, ;“非微信控” 人分別記為, .則再從中隨機抽取人構(gòu)成的所有基本事件為: , , , , , , , ,共有種;抽取人中恰有人為“微信控”所含基本事件為: , , , , , ,共有種,

所求為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】

設(shè)為實數(shù),函數(shù)。

(1)的單調(diào)區(qū)間與極值;

(2)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lmxy=1,若直線l與直線x+mm﹣1)y=2垂直,則m的值為_____,動直線lmxy=1被圓Cx2﹣2x+y2﹣8=0截得的最短弦長為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為,,橢圓的長軸長與焦距之比為,過的直線交于,兩點.

(1)當的斜率為時,求的面積;

(2)當線段的垂直平分線在軸上的截距最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在直接坐標系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關(guān)系;

II)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當年產(chǎn)量不足80千件時,C(x)x210x(萬元).當年產(chǎn)量不小于80千件時,C(x)51x1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)當年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點A(﹣13),B(3,3)兩點,且圓心C在直線xy+10上.

(1)求圓C的方程;

(2)求經(jīng)過圓上一點A(﹣1,3)的切線方程.

查看答案和解析>>

同步練習冊答案