已知二次函數(shù)的導函數(shù)的圖像與直線平行,且處取得極小值.設(shè)
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點,并求出零點.

(1),
(2)當時, 函數(shù)有一零點;
(),或)時,函數(shù)有兩個零點
時,函數(shù)有一零點

解析試題分析:解:(1)依題可設(shè) (),
;
的圖像與直線平行  
, ,  
設(shè),則      

當且僅當時,取得最小值,即取得最小值
時,  解得 
時,  解得
(2)由(),得 
時,方程有一解,函數(shù)有一零點
時,方程有二解,
,
函數(shù)有兩個零點,即;
,
函數(shù)有兩個零點,即;
時,方程有一解,  ,
函數(shù)有一零點 
綜上,當時, 函數(shù)有一零點
(),或)時,
函數(shù)有兩個零點;
時,函數(shù)有一零點.
考點:函數(shù)的零點
點評:主要是考查了函數(shù)的零點以及函數(shù)的極值的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知為函數(shù)圖象上一點,為坐標原點,記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)當 時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)已知函數(shù),其中a是實數(shù),設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的點,且x1<x2
(I)指出函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且x2<0,求x2﹣x1的最小值;
(III)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正項數(shù)列中,,點在拋物線上;數(shù)列中,點在過點(0, 1),以為斜率的直線上。
(1)求數(shù)列的通項公式;
(2)若   , 問是否存在,使成立,若存在,求出值;若不存在,說明理由;
(3)對任意正整數(shù),不等式恒成立,求正數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),),
(1)求函數(shù)的單調(diào)區(qū)間,并確定其零點個數(shù);
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(3)證明不等式 ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1﹣)元.
(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+)元;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車速度為0;當車流密度不超過20輛/千米時,車流速度為60千米,/小時,研究表明:當時,車流速度v是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的二次項系數(shù)為,滿足不等式的解集為(1,3),且方程有兩個相等的實根,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

周長為20cm的矩形,繞一條邊旋轉(zhuǎn)成一個圓柱,則圓柱體積的最大值為多少?

查看答案和解析>>

同步練習冊答案