已知正項數(shù)列中,,點在拋物線上;數(shù)列中,點在過點(0, 1),以為斜率的直線上。
(1)求數(shù)列的通項公式;
(2)若 , 問是否存在,使成立,若存在,求出值;若不存在,說明理由;
(3)對任意正整數(shù),不等式恒成立,求正數(shù)的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像與函數(shù)h(x)=x++2的圖像關(guān)于點A(0,1)對稱.
(1) 求的解析式;
(2) 若,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
漁場中魚群的最大養(yǎng)殖量是m噸,為保證魚群的生長空間,實際養(yǎng)殖量不能達到最大養(yǎng)殖量,必須留出適當?shù)目臻e量。已知魚群的年增長量y噸和實際養(yǎng)殖量x噸與空閑率乘積成正比,比例系數(shù)為k(k>0).
寫出y關(guān)于x的函數(shù)關(guān)系式,指出這個函數(shù)的定義域;
求魚群年增長量的最大值;
當魚群的年增長量達到最大值時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(Ⅰ)已知函數(shù),若存在,使得,則稱是函數(shù)的一個不動點,設(shè)二次函數(shù).
(Ⅰ) 當時,求函數(shù)的不動點;
(Ⅱ) 若對于任意實數(shù),函數(shù)恒有兩個不同的不動點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當a=-1時,求的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求a的值;
(3)當a=-1時,試推斷方程是否有實數(shù)解 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位設(shè)計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識,對于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時間內(nèi),在單位面積上通過的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時間內(nèi),在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量(結(jié)果用,及表示);
(2)為使雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計的大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且在處取得極小值.設(shè).
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點,并求出零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1) 試問函數(shù)f(x)能否在x= 時取得極值?說明理由;
(2) 若a= ,當x∈[,4]時,函數(shù)f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com