拋一枚均勻硬幣,正,反面出現(xiàn)的概率都是
1
2
,反復(fù)投擲,數(shù)列{an}定義:an=
1(第n次投擲出現(xiàn)正面)
-1(第n次投擲出現(xiàn)反面)
,若Sn=a1+a2+…+an(n∈N),則事件S4>0的概率為(  )
A、
1
16
B、
1
4
C、
5
16
D、
1
2
考點(diǎn):等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:事件S4>0表示反復(fù)拋擲4次硬幣,其中出現(xiàn)正面的次數(shù)是三次或四次,利用n次獨(dú)立重復(fù)試驗(yàn)恰好出現(xiàn)k次的概率公式能夠求出事件S4>0的概率.
解答: 解:事件S4>0表示反復(fù)拋擲4次硬幣,其中出現(xiàn)正面的次數(shù)是三次或四次,
其概率p=
C
3
4
(
1
2
)
3
1
2
+(
1
2
)
4
=
5
16
,
故選:C.
點(diǎn)評(píng):本題考查概率的性質(zhì)和應(yīng)用,解題時(shí)要合理地運(yùn)用n次獨(dú)立重復(fù)試驗(yàn)恰好出現(xiàn)k次的概率公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2tx+t2-1=0在區(qū)間(-2,4)上有兩個(gè)實(shí)根,則實(shí)數(shù)t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=3,an+1+an=3•2n,n∈N*
(1)證明數(shù)列{an-2n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)在數(shù)列{an}中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由;
(3)若1<r<s且r,s∈N*,求證:使得a1,ar,as成等差數(shù)列的點(diǎn)列(r,s)在某一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1,2,3,…,10這10個(gè)號(hào)碼中任意抽取3個(gè)號(hào)碼,其中至少有兩個(gè)號(hào)碼是連續(xù)整數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα•tanα=1,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱錐A-BCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為3,E為棱BC的中點(diǎn).
(1)求異面直線AE與CD所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)求該三棱錐的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在人群流量較大的街道,有一中年人吆喝“送錢”,只見(jiàn)他手拿一黑色小布袋,袋中有3只標(biāo)記為A、B、C的黃球,3只標(biāo)記為1、2、3的白球(顏色不同而質(zhì)地完全相同的乒乓球).旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢;若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢.
(1)寫出從6個(gè)球中隨機(jī)摸出3個(gè)的所有基本事件,并計(jì)算的摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?br />(2)假定一天中有100人次摸球,試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若點(diǎn)P(m,1)到直線4x-3y-1=0的距離為4,且點(diǎn)P在不等式2x+y≥3表示的平面區(qū)域內(nèi),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x
x-1
<0
的解是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案