【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當(dāng)k≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.

【答案】解:(Ⅰ)f(x)的定義域為(0,+∞), ∴f′(x)= ﹣k(
= (x>0),
當(dāng)k≤0時,kx≤0,
∴ex﹣kx>0,
令f′(x)=0,則x=2,
∴當(dāng)0<x<2時,f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>2時,f′(x)>0,f(x)單調(diào)遞增,
∴f(x)的單調(diào)遞減區(qū)間為(0,2),單調(diào)遞增區(qū)間為(2,+∞).
(Ⅱ)由(Ⅰ)知,k≤0時,函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞減,
故f(x)在(0,2)內(nèi)不存在極值點;
當(dāng)k>0時,設(shè)函數(shù)g(x)=ex﹣kx,x∈(0,+∞).
∵g′(x)=ex﹣k=ex﹣elnk ,
當(dāng)0<k≤1時,
當(dāng)x∈(0,2)時,g′(x)=ex﹣k>0,y=g(x)單調(diào)遞增,
故f(x)在(0,2)內(nèi)不存在兩個極值點;
當(dāng)k>1時,
得x∈(0,lnk)時,g′(x)<0,函數(shù)y=g(x)單調(diào)遞減,
x∈(lnk,+∞)時,g′(x)>0,函數(shù)y=g(x)單調(diào)遞增,
∴函數(shù)y=g(x)的最小值為g(lnk)=k(1﹣lnk)
函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點
當(dāng)且僅當(dāng)
解得:e
綜上所述,
函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點時,k的取值范圍為(e,
【解析】(Ⅰ)求出導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的正負性,求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,等價于它的導(dǎo)函數(shù)f′(x)在(0,2)內(nèi)有兩個不同的零點.
【考點精析】通過靈活運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;極值反映的是函數(shù)在某一點附近的大小情況即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SCD≥2SD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù)b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣ ,
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一個整數(shù)x0使得f(x0)≤0,則a的取值范
圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上且以4為周期的奇函數(shù),當(dāng)x∈(0,2)時,f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上的零點個數(shù)為5,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,則a的取值范圍為(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥0時,f(x)≥1總成立,求實數(shù)b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個極值點x1 , x2 , 求證;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的多面體中,四邊形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2
(1)求證:平面ABC⊥平面ACDF;
(2)求平面AEF與平面ACE所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案