【題目】已知函數(shù)f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

【答案】B

【解析】

利用輔助角公式進(jìn)行化簡(jiǎn),結(jié)合f(x)是偶函數(shù),求出φ的值,利用f(x)的對(duì)稱軸之間的距離求出函數(shù)的周期和ω,代入進(jìn)行求值即可.

f(x)sin(ωx+φ)﹣cos(ωx+φ)=2sin(ωx+φ),

f(x)是偶函數(shù),∴φkZ,

φ=

0<φ<π,∴當(dāng)k=0時(shí),φ,

f(x)=2sin(ωx)=2sin(ωx)=2cosωx

y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為,

,即T=π,即π,

ω=2,

f(x)=2cos2x

f()=2cos(2)=2cos1,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和分別為,且,,,其中為常數(shù).

1)若,.

①求數(shù)列的通項(xiàng)公式;

②求數(shù)列的通項(xiàng)公式.

2)若,.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,己知圓C經(jīng)過(guò)點(diǎn)(),(),且與直線相切.

1)求圓C的方程;

2)設(shè)P是直線lx4上的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線,切點(diǎn)為M,N.

①求證:直線MN過(guò)定點(diǎn)(記為Q);

②設(shè)直線PQ與圓C交于點(diǎn)A,B,與y軸交于點(diǎn)D.,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)邊分別為a,b,c.c6,則△ABC外接圓的半徑大小是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)進(jìn)行抽獎(jiǎng)促銷活動(dòng),抽獎(jiǎng)箱中有大小完全相同的4個(gè)小球,分別標(biāo)有A”“B”“C”“D”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再?gòu)闹腥稳?/span>1個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出D字球,則停止取球.獲獎(jiǎng)規(guī)則如下:依次取到標(biāo)有““A”“B”“C”“D字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有A”“B”“C”“D字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有A”“B”“C三個(gè)字的球?yàn)槿泉?jiǎng).

1)求分別獲得一、二、三等獎(jiǎng)的概率;

2)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F(0,1)為平面上一點(diǎn),H為直線ly=1上任意一點(diǎn),過(guò)點(diǎn)H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點(diǎn)P,記點(diǎn)P的軌跡為Γ.

1)求軌跡Γ的方程;

2)過(guò)點(diǎn)F作互相垂直的直線ABCD,其中直線AB與軌跡Γ交于點(diǎn)AB,直線CD與軌跡Γ交于點(diǎn)CD,設(shè)點(diǎn)M,N分別是ABCD的中點(diǎn).

①問(wèn)直線MN是否恒過(guò)定點(diǎn),如果經(jīng)過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由;

②求△FMN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知點(diǎn)到直線的距離為3.

1)求實(shí)數(shù)的值;

2)設(shè)是直線上的動(dòng)點(diǎn),在線段上,且滿足,求點(diǎn)軌跡方程,并指出軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)電子商務(wù)蓬勃發(fā)展,同時(shí)也極大地促進(jìn)了快遞行業(yè)的發(fā)展,為了更好地服務(wù)客戶,某快遞公司使用客戶評(píng)價(jià)系統(tǒng)對(duì)快遞服務(wù)人員的服務(wù)進(jìn)行評(píng)價(jià),每月根據(jù)客戶評(píng)價(jià)評(píng)選出快遞之星.已知快遞小哥小張?jiān)诿總(gè)月被評(píng)選為快遞之星的概率都是,則小張?jiān)诘谝患径鹊?/span>3個(gè)月中有2個(gè)月都被評(píng)為快遞之星的概率為_______;設(shè)小張?jiān)谏习肽甑?/span>6個(gè)月中被評(píng)為快遞之星的次數(shù)為隨機(jī)變量X,則隨機(jī)變量X的方差______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與直線相切于點(diǎn),點(diǎn)關(guān)于軸對(duì)稱.

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)軸上兩個(gè)不同的動(dòng)點(diǎn),且滿足,直線、與拋物線的另一個(gè)交點(diǎn)分別為試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.如果相交,求出的交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案