【題目】已知F(0,1)為平面上一點,H為直線ly=1上任意一點,過點H作直線l的垂線m,設線段FH的中垂線與直線m交于點P,記點P的軌跡為Γ.

1)求軌跡Γ的方程;

2)過點F作互相垂直的直線ABCD,其中直線AB與軌跡Γ交于點AB,直線CD與軌跡Γ交于點CD,設點MN分別是ABCD的中點.

①問直線MN是否恒過定點,如果經過定點,求出該定點,否則說明理由;

②求△FMN的面積的最小值.

【答案】1.(2)①恒過定點,定點為(03)②4

【解析】

1)設P的坐標,由題意可得|PF|=|PH|,整理可得P的軌跡方程;

2)①由題意可得直線BA,CD的斜率都存在,設直線AB的方程與拋物線聯(lián)立求出兩根之和,進而求出AB的中點M的坐標,同理可得N的坐標,進而求出直線MN的斜率,再求直線MN的方程,可得恒過定點;

②因為直線MN恒過定點,所以得SFMN|xMxN|,由均值不等式可得△FMN的面積的最小值為4.

(1)設P的坐標(x,y)由題意可得|PF|=|PH|,

所以|y+1|,

整理可得x2=4y,

所以軌跡Γ的方程:x2=4y;

2)由題意可得直線AB,CD的斜率均存在,設直線AB的方程:y=kx+1,A(x1,y1),B(x2,y2),

直線與拋物線聯(lián)立,整理可得:x24kx4=0,x1+x2=4k,y1+y2=k(x1+x2)+2=4k2+2,

所以AB的中點M(2k,2k2+1),

同理可得N(1),

所以直線MN的斜率為,

所以直線MN的方程為:y﹣(2k2+1)=(k)(x2k),

整理可得y=(k)x+3,所以恒過定點Q(0,3).

①所以直線恒過定點(0,3);

②從而可得SFMN|xMxN||2k|=2|k|≥4,當時取得等號.

所以△FMN的面積的最小值為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的點,AB3,BC4,AC5,CC17,過三點A、MC1作截面,當截面周長最小時,截面將三棱柱分成的上、下兩部分的體積比為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖1直角三角形ACB中,,,,點的中點,,將沿折起,使面,如圖2.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、,軸的正半軸上一點,交橢圓于,且,的內切圓半徑為1.

1)求橢圓的標準方程;

2)若點為圓上一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強學生的環(huán)境意識,某中學隨機抽取了50名學生舉行了一次環(huán)保知識競賽,本次競賽的成績(得分均為整數(shù),滿分100分)整理,制成下表:

成績

頻數(shù)

2

3

14

15

14

4

1)作出被抽查學生成績的頻率分布直方圖;

2)若從成績在中選一名學生,從成績在中選出2名學生,共3名學生召開座談會,求組中學生組中學生同時被選中的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實常數(shù)且).

Ⅰ)當時;

,判斷函數(shù)的奇偶性,并說明理由;

求證:函數(shù)上是增函數(shù);

Ⅱ)設集合,若,求的取值范圍(用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD是矩形,平面平面ABCD,ESB的中點,MCD上任意一點.

1)求證:

2)若,,平面SAD,求直線BM與平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機附贈玩具,中的一個,每袋零食乙從玩具中隨機附贈一個.記事件:一次性購買袋零食甲后集齊玩具,;事件:一次性購買袋零食乙后集齊玩具,.

1)求概率,;

2)已知,其中為常數(shù),求.

查看答案和解析>>

同步練習冊答案