分析 (1)根據(jù)題意,由x+y4=1,則y=4-4x,則|7-y|<2x+3,可得|4x+3|<2x+3,解可得x的范圍,即可得答案;
(2)根據(jù)題意,由基本不等式可得1=x+y4≥2√x•y4=√xy,即√xy≤1,用作差法分析可得√xy-xy=√xy(1-√xy),結(jié)合√xy的范圍,可得√xy-xy≥0,即可得證明.
解答 解:(1)根據(jù)題意,若x+y4=1,則4x+y=4,即y=4-4x,
則由|7-y|<2x+3,可得|4x+3|<2x+3,
即-(2x+3)<4x+3<2x+3,
解可得-1<x<0;
(2)證明:x>0,y>0,1=x+y4≥2√x•y4=√xy,即√xy≤1,
√xy-xy=√xy(1-√xy),
又由0<√xy≤1,則√xy-xy=√xy(1-√xy)≥0,
即√xy≥xy.
點評 本題考查基本不等式、絕對值不等式的應(yīng)用,關(guān)鍵是利用x+y4=1分析變量x、y之間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x0∈R,x02-x0≤0”的否定為“?x∈R,x2-x>0” | |
B. | 若非零向量→a、→b滿足|→a+→|=|→a|+|→|,則→a與→b共線 | |
C. | 命題“在△ABC中,A>30°,則sinA>12”的逆否命題為真命題 | |
D. | 設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2) | B. | (-3,2) | C. | (2,4) | D. | (-2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (30,42] | B. | (20,30) | C. | (20,30] | D. | (20,42) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,√55) | B. | (0,√33) | C. | (√55,√33) | D. | (√66,√55) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com