【題目】如圖,在Rt中, ,點(diǎn)、分別在線段、上,且,將沿折起到的位置,使得二面角的大小為.
(1)求證:;
(2)當(dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),求與平面 所成角的正弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)由等腰三角形的性質(zhì)可得 ,,翻折后垂直關(guān)系沒變,仍有,平面 ,從而得; (2) 二面角的平面角,由余弦定理得,由勾股定理可得,兩兩垂直,以為原點(diǎn),所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求出平面的法向量與的方向向量,利用空間向量夾角余弦公式可得結(jié)果.
試題解析:(1)
,翻折后垂直關(guān)系沒變,仍有,
.
(2) , 二面角的平面角,
,又,由余弦定理得,
,,兩兩垂直.
以為原點(diǎn),所在直線為軸,所在直線為軸,建立如圖直角坐標(biāo)系.
則
設(shè)平面的法向量
由可得
.
故PC與平面PEF所成的角的正弦值為 .
【方法點(diǎn)晴】本題主要考查利用空間向量求線面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個(gè)不同的點(diǎn)A,B,其橫坐標(biāo)分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當(dāng)x2≥2時(shí),證明x1·<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為離心率為,兩準(zhǔn)線之間的距離為8,點(diǎn)在橢圓上,且位于第一象限,過點(diǎn)作直線的垂線,過點(diǎn)作直線的垂線.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的交點(diǎn)在橢圓上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點(diǎn),求;
(2)設(shè)圓與軸的負(fù)半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為的直線交圓于兩點(diǎn),且,試證明直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(B)5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(C)8號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(D)9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為,直線l與曲線C分別交于M,N兩點(diǎn).若|PM|,|MN|,|PN|成等比數(shù)列,則a的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com