【題目】如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPD,E,F分別為AD,PB的中點(diǎn).求證:

1EF//平面PCD;

2)平面PAB平面PCD

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)取BC中點(diǎn)G,連結(jié)EGFG,推導(dǎo)出,從而平面平面,由此能得出結(jié)論;

2)推導(dǎo)出,從而平面PAD,即得,結(jié)合得出平面PCD,由此能證明結(jié)論成立.

1)取BC中點(diǎn)G,連結(jié)EGFG,∵E,F分別是ADPB的中點(diǎn),

,,

,

,∴平面平面,

平面,∴平面.

2)因?yàn)榈酌?/span>ABCD為矩形,所以

又因?yàn)槠矫?/span>平面ABCD,

平面平面平面ABCD,所以平面PAD

因?yàn)?/span>平面PAD,所以.

又因?yàn)?/span>,,所以平面PCD

因?yàn)?/span>平面PAB,所以平面平面PCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面凸六邊形的邊長(zhǎng)相等,其中為矩形,.將,分別沿,折至,,且均在同側(cè)與平面垂直,連接,如圖所示,E,G分別是,的中點(diǎn).

1)求證:多面體為直三棱柱;

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是邊長(zhǎng)為4的正三角形,,,,MAB中點(diǎn).

(Ⅰ)證明:平面ADE

(Ⅱ)求直線CA與平面BCDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某地區(qū)小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績(jī),由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,內(nèi)的頻率之比為

1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;

2)若將頻率視為概率,從該地區(qū)小學(xué)的這些學(xué)生中隨機(jī)抽取3人,記這3人中成績(jī)位于區(qū)間內(nèi)的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.過(guò)去10日,A、BC、D四地新增疑似病例數(shù)據(jù)信息如下:

A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;

C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.

則以上四地中,一定符合沒(méi)有發(fā)生大規(guī)模群體感染標(biāo)志的是_______(AB、CD)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足n≥2時(shí),,則稱數(shù)列(n)L數(shù)列

1)若,且L數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若,且L數(shù)列為遞增數(shù)列,求k的取值范圍;

3)若,其中p1,記L數(shù)列的前n項(xiàng)和為,試判斷是否存在等差數(shù)列,對(duì)任意n,都有成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,其焦點(diǎn)到準(zhǔn)線的距離為2.直線與拋物線交于兩點(diǎn),過(guò),分別作拋物線的切線,交于點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)瓷器的歷史上六棱形的瓷器非常常見(jiàn),因?yàn)榱,八是中?guó)人的吉利數(shù)字,所以好多器都做成六棱形和八棱形,數(shù)學(xué)李老師有一個(gè)正六棱柱形狀的筆筒,底面邊長(zhǎng)為6cm,高為18cm(底部及筒壁厚度忽略不計(jì)),一長(zhǎng)度為cm的圓鐵棒l(粗細(xì)忽略不計(jì))斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對(duì)的側(cè)棱上.一位小朋友玩耍時(shí),向筆筒內(nèi)注水,恰好將圓鐵棒淹沒(méi),又將一個(gè)圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:

假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.

1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);

2)若從參與調(diào)查,且每天課外鍛煉時(shí)間在內(nèi)的該校教師中任取2人,求至少有1名初中教師被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案