若拋物線y=2px2(p>0)的焦點(diǎn)與雙曲線
y2
2
-
x2
2
=1的一個(gè)焦點(diǎn)重合,則p的值為(  )
A、2
B、4
C、
1
8
D、
1
16
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求得雙曲線的焦點(diǎn)為F(0,2),該點(diǎn)也是拋物線的焦點(diǎn),可得
p
2
=2,所以p的值為4.
解答: 解:雙曲線
y2
2
-
x2
2
=1的上焦點(diǎn)為F(0,2),
∵拋物線y=2px2(p>0)的焦點(diǎn)與雙曲線
y2
2
-
x2
2
=1的一個(gè)焦點(diǎn)重合,
p
2
=2,可得p=4.
故選:B.
點(diǎn)評(píng):本題給出拋物線與雙曲線右焦點(diǎn)重合,求拋物線的焦參數(shù)的值,著重考查了雙曲線的標(biāo)準(zhǔn)方程和拋物線簡(jiǎn)單幾何性質(zhì)等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(2x-x2)ex,給出以下四個(gè)結(jié)論:
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是極小值,f(
2
)是極大值;
③f(x)沒有最小值,也沒有最大值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=|x-1|+|x-2|+|x-3|+…+|x-20|,1≤x≤20,則f(1)=
 
,f(5)=
 
,f(20)=
 
,當(dāng)x=
 
時(shí),f(x)最小,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖形中不一定是平面圖形的是( 。
A、三角形B、平行四邊形
C、梯形D、四邊相等的四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+2cosx在區(qū)間[0,
π
2
]上取最小值時(shí),x的值為(  )
A、0
B、
π
6
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐又稱四面體,則在四面體A-BCD中,可以當(dāng)作棱錐底面的三角形有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+2x-1的零點(diǎn)所在的大致區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2x-
x-1
的值域( 。
A、[0,+∞)
B、[
17
8
,+∞)
C、[
5
4
,+∞)
D、[
15
8
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinα-3cosα
sinα+cosα
=-1,求下列各式的值
(1)tanα;     
(2)sin2α+sinαcosα+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案