函數(shù)f(x)=x+2cosx在區(qū)間[0,
π
2
]上取最小值時,x的值為( 。
A、0
B、
π
6
C、
π
3
D、
π
2
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用導(dǎo)數(shù)性質(zhì)求解.
解答: 解:∵f(x)=x+2cosx,
∴f′(x)=1-2sinx,
f(x)=0,x∈[0,
π
2
]
,得x=
π
6

∵f(0)=2,f(
π
6
)=
π
6
+
3
,f(
π
2
)=
π
2

∴x=
π
2
時,函數(shù)f(x)=x+2cosx在區(qū)間[0,
π
2
]上取最小值
π
2

故選:D.
點評:考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且Sm=3,S3m=5,則S4m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,|AB|=|AC|,頂點A、B在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上,頂點C為橢圓的左焦點,線段AB過橢圓的右焦點F且垂直于長軸,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-12x,則f(x)的極小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x3+3x-3=0的解在區(qū)間( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y=2px2(p>0)的焦點與雙曲線
y2
2
-
x2
2
=1的一個焦點重合,則p的值為( 。
A、2
B、4
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U=R,集合 A={x|x+1<0},B={x|x-3<0},則(∁UA)∩B=( 。
A、{x|x>3}
B、{x|-1<x<3}
C、{x|x<-1}
D、{x|-1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
,
b
均為單位向量,其夾角為θ,則命題“p:|
a
-
b
|>1”是命題q:θ∈[
π
2
,
6
)的(  )條件( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過圓O外一點P分別作圓的切線PA和割線PB,且PB=9,C是圓上一點使得BC=4,∠BAC=∠APB,則AB=
 

查看答案和解析>>

同步練習(xí)冊答案