【題目】王明、李東、張紅三位同學(xué)在第一、第二學(xué)期消費(fèi)的部分文具的數(shù)量如表所示:

姓名

第一學(xué)期

第二學(xué)期

筆記本

練習(xí)本

水筆

鉛筆

筆記本

練習(xí)本

水筆

鉛筆

王明

3

5

2

4

4

6

3

3

李東

2

6

3

3

4

8

5

2

張紅

4

7

4

2

5

10

6

4

若筆記本的單價為每本5元;練習(xí)本每本2元;水筆每支3元;鉛筆每支1.求三位學(xué)生在這些文具上各自花費(fèi)的金額.

【答案】分別花費(fèi)79元、87元、115

【解析】

根據(jù)題意用矩陣表示各文具每學(xué)期消費(fèi)數(shù)量和文具的單價,而花費(fèi)的金額等于數(shù)量乘文具的單價,利用矩陣乘法求出三位學(xué)生在這些文具上各自花費(fèi)的金額.

各文具每學(xué)期消費(fèi)數(shù)量用矩陣表示,.

這些文具的單價矩陣為,所以這三位同學(xué)兩學(xué)期在這幾種文具上花費(fèi)的矩陣為

所以這三位學(xué)生在這些文具上分別花費(fèi)79元、87元、115

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知雙曲線.

1)過曲線的左頂點(diǎn)作的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;

2)設(shè)斜率為的直線交曲線、兩點(diǎn),若與圓相切,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù),設(shè)長方形的邊長,,邊、上的點(diǎn),…,,…,,,,…,分別滿足,

(1)對于,2,…,,求、的交點(diǎn)所在的二次曲線的方程;

(2)的延長線上的點(diǎn),,…,滿足,對于,2,…,,求的交點(diǎn)所在的二次曲線的方程;

(3)設(shè)在二次曲線上到的距離最大的點(diǎn)為,求與二次曲線上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個,求實(shí)數(shù)的取值范圍;

)當(dāng)時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,試判斷函數(shù)的零點(diǎn)個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合X是實(shí)數(shù)R的子集,如果點(diǎn)滿足:對任意,都存在,使得,那么稱為集合X的聚點(diǎn).集合①;②R除去;③;④Z其中以0為聚點(diǎn)的集合有( ).

A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年雙11當(dāng)天,某購物平臺的銷售業(yè)績高達(dá)2135億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系,現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計(jì),對商品的好評率為0.9,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為140次.

(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?

對服務(wù)好評

對服務(wù)不滿意

合計(jì)

對商品好評

140

對商品不滿意

10

合計(jì)

200

(2)若針對服務(wù)的好評率,采用分層抽樣的方式從這200次交易中取出4次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2+ax)(a>0),(b∈R).

(1)若函數(shù)f(x)的圖象在點(diǎn)(3,f(3))處的切線與函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行,求a,b之間的關(guān)系;

(2)在(1)的條件下,若b=a,且f(x)≥mg(x)對任意x∈[,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王、小李在兩次數(shù)學(xué)考試中答對題數(shù)如下表表示:

題型

答對 題數(shù)

姓名

期中考試

期末考試

填空題

(每題3分)

選擇題

每題3分)

解答題

(每題8分)

填空題

(每題3分)

選擇題

每題3分)

解答題

(每題8分)

小王

10

3

2

11

4

4

小李

9

5

3

7

3

3

1)用矩陣表示小王和小李期中考試答對題數(shù)、期末考試答對題數(shù)、每種題型的分值;

2)用矩陣運(yùn)算表示他們在兩次考試中各題型答對題總數(shù);

3)用矩陣計(jì)算小王、小李兩次考試各題型平均答對題數(shù);

4)用矩陣計(jì)算他們期中、期末的成績;

5)如果期中考試成績占40%,期末考試成績占60%,用矩陣求兩同學(xué)的總評成績.

查看答案和解析>>

同步練習(xí)冊答案