【題目】如圖,在平面直角坐標(biāo)系中,過軸正方向上一點(diǎn)任作一直線,與拋物線相交于兩點(diǎn),一條垂直于軸的直線分別與線段和直線交于點(diǎn).
(1) 若,求的值;
(2) 若,為線段的中點(diǎn),求證: 直線與該拋物線有且僅有一個(gè)公共點(diǎn).
(3) 若,直線的斜率存在,且與該拋物線有且僅有一個(gè)公共點(diǎn),試問是否一定為線段的中點(diǎn)? 說明理由.
【答案】(1) ;(2) 證明見解析;(3)是,理由見解析.
【解析】
(1)設(shè),,,則,聯(lián)立直線方程和拋物線方程,消去后利用韋達(dá)定理可得關(guān)于的方程,從而可求的值.
(2)設(shè),用表示直線的方程,聯(lián)立該直線的方程和拋物線的方程后可得該方程組有且只有一組解,故直線與拋物線相切.
(3)設(shè),利用(2)的結(jié)果可得切線的方程,求出的坐標(biāo)和直線的方程后,聯(lián)立直線的方程和拋物線的方程,消去后利用韋達(dá)定理可求中點(diǎn)的橫坐標(biāo),可證它就是的橫坐標(biāo),從而一定為線段的中點(diǎn).
(1) 設(shè),,
由得,故,從而.
又,故,解得或,
舍去負(fù)值,得.
(2)由(1)得,,故,故.
設(shè)在上,且滿足,又,
故直線的方程為,
而.
故,
由得,故方程組有唯一解,
故直線與該拋物線有且僅有一個(gè)公共點(diǎn).
(3)設(shè),這里,
由(2)知過與有且僅有一個(gè)公共點(diǎn)的斜率存在的直線必為.
令得,故,
又 ,所以.
由 ,故
這樣是的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)列中的所有項(xiàng)按第一行排3項(xiàng),以下每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
……
記表中的第一列數(shù),,,…,構(gòu)成數(shù)列.
(1)設(shè),求m的值;
(2)若,對于任何,都有,且.求數(shù)列的通項(xiàng)公式.
(3)對于(2)中的數(shù)列,若上表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q()的等比數(shù)列,且,求上表中第k()行所有項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-,x∈(0,1].
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在x∈(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可,不必計(jì)算出結(jié)果)
(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
數(shù)學(xué)成績 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成績 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;
②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜郑?/span>
附:線性回歸方程,
其中,.
76 | 83 | 812 | 526 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)給定的正邊形的頂點(diǎn)中隨機(jī)地選取三個(gè)不同的頂點(diǎn),任何一種選法的可能性是相等的,則正多邊形的中心位于所選三個(gè)點(diǎn)構(gòu)成的三角形內(nèi)部的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義符號函數(shù),已知,.
(1)求關(guān)于的表達(dá)式,并求的最小值.
(2)當(dāng)時(shí),函數(shù)在上有唯一零點(diǎn),求的取值范圍.
(3)已知存在,使得對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于項(xiàng)數(shù)為m(且)的有窮正整數(shù)數(shù)列,記,即為中的最小值,設(shè)由組成的數(shù)列稱為的“新型數(shù)列”.
(1)若數(shù)列為2019,2020,2019,2018,2017,請寫出的“新型數(shù)列”的所有項(xiàng);
(2)若數(shù)列滿足,且其對應(yīng)的“新型數(shù)列”項(xiàng)數(shù),求的所有項(xiàng)的和;
(3)若數(shù)列的各項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求符合條件的及其對應(yīng)的“新型數(shù)列”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com