【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列的前55項和為( )

A. 4072B. 2026C. 4096D. 2048

【答案】A

【解析】

利用n次二項式系數(shù)對應(yīng)楊輝三角形的第n+1行,然后令x1得到對應(yīng)項的系數(shù)和,結(jié)合等比數(shù)列和等差數(shù)列的公式進行轉(zhuǎn)化求解即可.

解:由題意可知:每一行數(shù)字和為首項為1,公比為2的等比數(shù)列,

則楊輝三角形的前n項和為Sn2n1,

若去除所有的為1的項,則剩下的每一行的個數(shù)為1,23,4,……,可以看成構(gòu)成一個首項為1,公差為1的等差數(shù)列,

Tn,

可得當n10,所有項的個數(shù)和為55,

則楊輝三角形的前12項的和為S122121

則此數(shù)列前55項的和為S12234072,

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點、,點是圓上一動點,線段的垂直平分線交線段于點,設(shè)點的軌跡為曲線.且直線交曲線兩點(點軸的上方).

1)求曲線的方程;

2)試判斷直線與曲線的另一交點是否與點關(guān)于軸對稱?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國古代第一部數(shù)學專著,成于公元一世紀左右,系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關(guān)系;

(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,已知PC⊥BC,PC⊥AC,點E,F(xiàn),G分別是所在棱的中點,則下面結(jié)論中錯誤的是 (  )

A.平面EFG∥平面PBC

B.平面EFG⊥平面ABC

C.∠BPC是直線EF與直線PC所成的角

D.∠FEG是平面PAB與平面ABC所成二面角的平面角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一扇形的圓心角為α,半徑為R,弧長為l.

(1)若α=60°,R=10 cm,求扇形的弧長l;

(2)已知扇形的周長為10 cm,面積是4 cm2,求扇形的圓心角;

(3)若扇形周長為20 cm,當扇形的圓心角α為多少弧度時,這個扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,有下列結(jié)論:

平面;

②異面直線AD所成的角為

③三棱柱的體積是三棱錐的體積的四倍;

④在四面體中,分別連接三組對棱的中點的線段互相垂直平分.

其中正確的是________(填出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生會為了解該校學生對2017年全國兩會的關(guān)注情況,隨機調(diào)查了該校200名學生,并將這200名學生分為對兩會“比較關(guān)注”與“不太關(guān)注”兩類.已知這200名學生中男生比女生多20人,對兩會“比較關(guān)注”的學生中男生人數(shù)與女生人數(shù)之比為,對兩會“不太關(guān)注”的學生中男生比女生少5人.

(1)根據(jù)題意建立列聯(lián)表,并判斷是否有的把握認為男生與女生對兩會的關(guān)注有差異?

(2)該校學生會從對兩會“比較關(guān)注”的學生中根據(jù)性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人進行回訪,求這2人全是男生的概率.

參考公式和數(shù)據(jù):,其中

查看答案和解析>>

同步練習冊答案