【題目】如圖,點(diǎn)、,點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交線段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.且直線交曲線兩點(diǎn)(點(diǎn)軸的上方).

1)求曲線的方程;

2)試判斷直線與曲線的另一交點(diǎn)是否與點(diǎn)關(guān)于軸對稱?

【答案】1;(2)是.

【解析】

1)如圖所示,,點(diǎn)Q的軌跡表示的曲線為橢圓,M,N為焦點(diǎn),由此可求方程;

2)設(shè),,將直線方程與橢圓方程聯(lián)立化為:,假設(shè)點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,則.下面證明D,A, C三點(diǎn)共線.即證明:, 即證明:利用根與系數(shù)的關(guān)系證明: 0即可.

1)如圖所示,

的軌跡是以、為焦點(diǎn)的橢圓,設(shè)其方程為

,

,∴;

2)聯(lián)立

設(shè)

恒成立,

假設(shè)關(guān)于軸對稱,則,下證三點(diǎn)共線

即證,即證

,

共線,

的另一交點(diǎn)關(guān)于軸對稱

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面為平行四邊形,平面,,

1)證明:平面平面

2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)的面積之和取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)已知在ABC中,A,B,C的對邊分別為a,b,c,,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(為常數(shù),)經(jīng)過點(diǎn),其對稱軸在軸右側(cè),有下列結(jié)論:①拋物線經(jīng)過點(diǎn);②方程有兩個(gè)不相等的實(shí)數(shù)根;③.其中,正確結(jié)論的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系xoy中,曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;

(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積的經(jīng)驗(yàn)公式為:.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積.球缺是指一個(gè)球被平面截下的一部分,廈門嘉庚體育館近似球缺結(jié)構(gòu)(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計(jì)體育館建筑高度(單位:)所在區(qū)間為( )

參考數(shù)據(jù): ,,

,.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)滿足:①對任意實(shí)數(shù)都有;②對任意,都有恒成立;③不恒為0,且當(dāng)時(shí),.

1)求的值;

2)判斷函數(shù)的奇偶性,并給出你的證明.

3)定義若存在非零常數(shù),使得對函數(shù)定義域中的任意一個(gè),均有,則稱為以為周期的周期函數(shù)”.試證明:函數(shù)為周期函數(shù),并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

同步練習(xí)冊答案