【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點P是CD上的動點,則直線B1P與直線BC1所成的角等于(

A.30°
B.45°
C.60°
D.90°

【答案】D
【解析】連接A1D,B1C,則BC1⊥B1C,BC1⊥DC,B1C∩DC=CBC1⊥平面A1B1CD,B1P平面A1B1CD,∴BC1⊥B1P,即B1P與BC1所成的角等于90°.
故選D
【考點精析】本題主要考查了直線與平面垂直的判定的相關知識點,需要掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (ab≠0).
(1)當b=a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在點(2,f(2))處的切線方程是y=2x﹣3,證明:曲線y=f(x)上任一點處的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形 的三個頂點的坐標為 ,
(1)在 ABC中,求邊AC中線所在直線方程;
(2)求平行四邊形 的頂點D的坐標及邊BC的長度;
(3)求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校為了解學生的數(shù)學學習情況,在全校高一年級學生中進行了抽樣調查,調查結果如表所示:

喜歡數(shù)學

不喜歡數(shù)學

合計

男生

60

20

80

女生

10

10

20

合計

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“男生和女生在喜歡數(shù)學方面有差異”;
(2)在被調查的女生中抽出5名,其中2名喜歡數(shù)學,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡數(shù)學的概率.
附:參考公式:K2= ,其中n=a+b+c+d

P(K2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正三角形ABC的邊BC所在直線斜率是0,則AC、AB所在的直線斜率之和為( )
A.-
B.0
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個棱錐的側棱長都相等,那么這個棱錐(
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD﹣A1B1C1D1為正方體,下面結論錯誤的序號是
①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④異面直線AD與CB1所成角為60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設農科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求出y關于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案