【題目】一個(gè)棱錐的側(cè)棱長(zhǎng)都相等,那么這個(gè)棱錐(
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內(nèi)接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐

【答案】C
【解析】解答:如圖,以四棱錐A﹣BCED為例,設(shè)頂點(diǎn)A在底面的射影為O連接OB、OC、OE、OD,
∵AO⊥平面BCED,AB=AC=AE=AD
∴Rt△AOB≌Rt△AOC≌Rt△AOE≌Rt△AOD
∴OB=OC=OE=OD
以O(shè)為圓心,OB長(zhǎng)為半徑畫(huà)圓,則C、E、D三點(diǎn)都在這個(gè)圓上
所以四邊形BCED為圓內(nèi)接四邊形
對(duì)于其它棱錐的情況可以類(lèi)似地進(jìn)行證明
故選C

分析:根據(jù)線(xiàn)面垂直的有關(guān)定理,可由側(cè)棱長(zhǎng)相等推出它們?cè)诘酌娴纳溆伴L(zhǎng)(各條線(xiàn)段)相等,由此可由頂點(diǎn)在底面的射影為圓心,某條射影線(xiàn)段長(zhǎng)為半徑畫(huà)圓,則底面其它頂點(diǎn)都在這個(gè)圓上,由此不難選出正確答案.
【考點(diǎn)精析】利用直線(xiàn)與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知已知圓 經(jīng)過(guò) 兩點(diǎn),且圓心C在直線(xiàn) 上,求解:(1)圓C的方程;(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷錯(cuò)誤的是(
A.“am2<bm2”是“a<b”的充分不必要條件
B.命題“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”
C.“若a=1,則直線(xiàn)x+y=0和直線(xiàn)x﹣ay=0互相垂直”的逆否命題為真命題
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ=
(1)求曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的普通方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)P是CD上的動(dòng)點(diǎn),則直線(xiàn)B1P與直線(xiàn)BC1所成的角等于(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的不等式).

(1)若不等式的解集為,求, 的值;

(2)求不等式)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要制作一個(gè)如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中是一個(gè)矩形, 是一個(gè)等腰梯形,梯形高, ,設(shè)米, 米.

(1)求關(guān)于的表達(dá)式;

(2)如何設(shè)計(jì), 的長(zhǎng)度,才能使所用材料最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}滿(mǎn)足:a7=a6+2a5 , 若存在兩項(xiàng)am , an使得 =4a1 , 則 + 的最小值為(
A.
B.
C.
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某射擊運(yùn)動(dòng)員每次射擊擊中目標(biāo)的概率都為,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員4次射擊至少3次擊中目標(biāo)的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒(méi)有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),再以每4個(gè)隨機(jī)數(shù)為一組,代表4次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

據(jù)此估計(jì),該射擊運(yùn)動(dòng)員4次射擊至少3次擊中目標(biāo)的概率為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案