【題目】已知已知圓 經(jīng)過(guò) 、 兩點(diǎn),且圓心C在直線(xiàn) 上,求解:(1)圓C的方程;(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.

【答案】
(1)

由于AB的中點(diǎn)為 , ,則線(xiàn)段AB的垂直平分線(xiàn)方程為 , 而圓心C是直線(xiàn) 與直線(xiàn) 的交點(diǎn),由 解得 ,即圓心 ,又半徑為 ,故圓C的方程為 ;


(2)

圓心 到直線(xiàn) 的距離 得 ,解得 .


【解析】分析:本題主要考查了直線(xiàn)與圓的位置關(guān)系,解決問(wèn)題的關(guān)鍵是(1)通過(guò)AB的中點(diǎn)為 ,得到AB的垂直平分線(xiàn)方程為 , 因?yàn)閳A心C是直線(xiàn) 與直線(xiàn) 的交點(diǎn),聯(lián)立得到圓心 ,根據(jù) ,得到圓C的方程為;(2)根據(jù)直線(xiàn)與圓相交圓心到直線(xiàn)的距離小于半徑計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司現(xiàn)提供兩種一年期投資理財(cái)方案,一年后投資盈虧的情況如下表:

投資股市

獲利

不賠不賺

虧損

購(gòu)買(mǎi)基金

獲利

不賠不賺

虧損

概率

概率

(Ⅰ)甲、乙兩人在投資顧問(wèn)的建議下分別選擇“投資股市”和“買(mǎi)基金”,若一年后他們中至少有一人盈利的概率大于,求的取值范圍;

(Ⅱ)若,某人現(xiàn)有萬(wàn)元資金,決定在“投資股市”和“購(gòu)買(mǎi)基金”這兩種方案中選擇出一種,那么選擇何種方案可使得一年后的投資收益的數(shù)學(xué)期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,臺(tái)風(fēng)中心從A地以每小時(shí)20千米的速度向東北方向(北偏東)移動(dòng),離臺(tái)風(fēng)中心不超過(guò)300千米的地區(qū)為危險(xiǎn)區(qū)域.城市B在A地的正東400千米處.請(qǐng)建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,解決以下問(wèn)題:

(1) 求臺(tái)風(fēng)移動(dòng)路徑所在的直線(xiàn)方程;

(2)求城市B處于危險(xiǎn)區(qū)域的時(shí)間是多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求的最大值;

(Ⅱ)若對(duì)恒成立,求的取值范圍;

(Ⅲ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+ (ab≠0).
(1)當(dāng)b=a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程是y=2x﹣3,證明:曲線(xiàn)y=f(x)上任一點(diǎn)處的切線(xiàn)與直線(xiàn)x=1和直線(xiàn)y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是平面內(nèi)互相垂直的兩條直線(xiàn),它們的交點(diǎn)為A,異于點(diǎn)A的兩動(dòng)點(diǎn)B、C分別在 、 上,且BC= ,則過(guò)A、B、C三點(diǎn)圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>4成立的x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C:sinθ=ρcos2θ,過(guò)點(diǎn)M(﹣1,2)的直線(xiàn)l: (t為參數(shù))與曲線(xiàn)C相交于A、B兩點(diǎn).求:
(1)線(xiàn)段AB的長(zhǎng)度;
(2)點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)棱錐的側(cè)棱長(zhǎng)都相等,那么這個(gè)棱錐(
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內(nèi)接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案