已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為
2
,且過點(diǎn)(4,-
10
)
,
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系kx-y-3k+m=0(其中k為參數(shù))所過的定點(diǎn)M恰在雙曲線上,求證:F1M⊥F2M.
(1)∵e=
2
,∴
c
a
=
2
,∴c2=2a2=a2+b2,∴a=b,
∴設(shè)雙曲線方程為x2-y2=a2(a>0),∵雙曲線經(jīng)過(4,-
10
)
,∴16-10=a2即a2=6,
∴所求雙曲線方程為
x2
6
-
y2
6
=1
.----------(4分)
(2)∵直線系方程可化為k(x-3)-y+m=0
∴直線系過定點(diǎn)M(3,m).------------(5分)
∵M(jìn)(3,m)在雙曲線上,∴9-m2=6,,∴m2=3
又雙曲線焦點(diǎn)坐標(biāo)為F1(-2
3
,0)
F2(2
3
,0)

kF1M=
m
3+2
3
,kF2M=
m
3-2
3
-----------(7分)
kF1MkF2M=
m2
(3+2
3
)(3-2
3
)
=-1
∴F1M⊥F2M----------(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:y=x+2,與拋物線x2=y交于A(xA,yA),B(xB,yB)兩點(diǎn),l與x軸交于點(diǎn)C(xC,0).
(1)求證:
1
xA
+
1
xB
=
1
xC
;
(2)求直線l與拋物線所圍平面圖形的面積;
(3)某同學(xué)利用TI-Nspire圖形計(jì)算器作圖驗(yàn)證結(jié)果時(shí)(如圖1所示),嘗試拖動(dòng)改變直線l與拋物線的方程,發(fā)現(xiàn)
1
xA
+
1
xB
1
xC
的結(jié)果依然相等(如圖2、圖3所示),你能由此發(fā)現(xiàn)出關(guān)于拋物線的一般結(jié)論,并進(jìn)行證明嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=x,直線l:y=k(x-1)+1,要使拋物線C上存在關(guān)于對(duì)稱的兩點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(diǎn)P(1,
3
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過F1的直線l與橢圓C交于A、B兩點(diǎn),問在橢圓C上是否存在一點(diǎn)M,使四邊形AMBF2為平行四邊形,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線y=kx+2與曲線y=
x2-1
,|x|>1
1-x2
,|x|≤1
恰有兩個(gè)不同的交點(diǎn),則k∈______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y=-x2+2x,在點(diǎn)A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的方程為x2+y2=4,過點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線x=-1與橢圓相交于A、B兩點(diǎn),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=-4于兩點(diǎn)Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)y在軸上,焦距為2
3
,且過點(diǎn)M(-
13
4
3
2
)

(1)求橢圓C的方程;
(2)若過點(diǎn)N(
1
2
,1)
的直線l交橢圓C于A、B兩點(diǎn),且N恰好為AB中點(diǎn),能否在橢圓C上找到點(diǎn)D,使△ABD的面積最大?若能,求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓E:(x+
3
2+y2=16,點(diǎn)F(
3
,0),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(Ⅱ)已知A,B,C是軌跡Γ的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對(duì)稱,且|CA|=|CB|,問△ABC的面積是否存在最小值?若存在,求出此時(shí)點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案