已知曲線C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
csinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.
(1)將曲線C1的參數(shù)方程化為普通方程,將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)曲線C1,C2是否相交,若相交請(qǐng)求出公共弦的長(zhǎng),若不相交,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)同角三角函數(shù)關(guān)系消去參數(shù)θ,即可求出曲線C1的普通方程,曲線C2的極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)公式進(jìn)行化簡(jiǎn)就可求出直角坐標(biāo)方程;
(2)先求出兩個(gè)圓心之間的距離與兩半徑和進(jìn)行比較,設(shè)相交弦長(zhǎng)為d,因?yàn)閮蓤A半徑相等,所以公共弦平分線段C1C2,建立等量關(guān)系,解之即可.
解答:解:(1)由
x=-2+
10
cosθ
y=
10
sinθ
得(x+2)2+y2=10
∴曲線C1的普通方程為得(x+2)2+y2=10
∵ρ=2cosθ+6sinθ
∴ρ2=2ρcosθ+6ρsinθ
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ
∴x2+y2=2x+6y,即(x-1)2+(y-3)2=10
∴曲線C2的直角坐標(biāo)方程為(x-1)2+(y-3)2=10
(2)∵圓C1的圓心為(-2,0),圓C2的圓心為(1,3)
|C1C2| =
(-2-1)2+(0-3)2
 =3
2
<2
10

∴兩圓相交
設(shè)相交弦長(zhǎng)為d,因?yàn)閮蓤A半徑相等,所以公共弦平分線段C1C2
(
d
2
)
2
+(
3
2
2
)
2
=10

∴d=
22

∴公共弦長(zhǎng)為
22
點(diǎn)評(píng):本題主要考查了圓的參數(shù)方程,以及簡(jiǎn)單曲線的極坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù)).
(1)若將曲線C1與C2上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半,分別得到曲線C1′和C2′,求出曲線C1′和C2′的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C2′垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為
x=4+5cost
y=5+5sint
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(矩陣與變換)已知二階矩陣M=
0-1
23

(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)設(shè)向量
α
=
-1
3
,求M100
α

(2)(坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為
x=1+2cosθ
y=-1+2sinθ
(θ是參數(shù)),曲線C2的極坐標(biāo)方程為θ=
π
4
(ρ∈R).
(Ⅰ)求曲線C1的普通方程和曲線C2的平面直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C1和曲線C2相交于A,B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程)已知曲線C1的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
,曲線C2的極坐標(biāo)方程ρcos(θ-
π
4
)=
2
,則曲線C1與曲線C2的交點(diǎn)個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù)),則兩條曲線的交點(diǎn)是
(0,1)和(-2,0)
(0,1)和(-2,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案