【題目】關于函數(shù)有下述四個結論:
①是偶函數(shù);②的最大值為;
③在有個零點;④在區(qū)間單調遞增.
其中所有正確結論的編號是( )
A.①②B.①③C.②④D.①④
【答案】D
【解析】
利用偶函數(shù)的定義可判斷出命題①的正誤;分和兩種情況,去絕對值,利用輔助角公式以及正弦函數(shù)的最值可判斷命題②的正誤;分和兩種情況討論,求出函數(shù)的零點,可判斷命題③的正誤;去絕對值,將函數(shù)的解析式化簡,結合正弦型函數(shù)的單調性可判斷出命題④的正誤.
對于命題①,函數(shù)的定義域為,關于原點對稱,且,該函數(shù)的為偶函數(shù),命題①正確;
對于命題②,當函數(shù)取最大值時,,則.
當時,,
此時,,當,函數(shù)取得最大值.
當時,,
此時,,當,函數(shù)取得最大值.
所以,函數(shù)的最大值為,命題②錯誤;
對于命題③,當時,令,則,此時;
當時,令,則,此時.
所以,函數(shù)在區(qū)間上有且只有兩個零點,命題③錯誤;
對于命題④,當時,,則.
所以,函數(shù)在區(qū)間上單調遞增,命題④錯誤.
因此,正確的命題序號為①④.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,底面為正方形的四棱錐中,平面,為棱上一動點,.
(1)當為中點時,求證:平面;
(2)當平面時,求的值;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義城為D,若滿足條件:存在,使在上的值城為(且),則稱為“k倍函數(shù)”,給出下列結論:①是“1倍函數(shù)”;②是“2倍函數(shù)”:③是“3倍函數(shù)”.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某山地車訓練中心有一直角梯形森林區(qū)域,其四條邊均為道路,其中,,千米,千米,千米.現(xiàn)有甲、乙兩名特訓隊員進行野外對抗訓練,要求同時從地出發(fā)勻速前往地,其中甲的行駛路線是,速度為千米/小時,乙的行駛路線是,速度為千米/小時.
(1)若甲、乙兩名特訓隊員到達地的時間相差不超過分鐘,求乙的速度的取值范圍;
(2)已知甲、乙兩名特訓隊員攜帶的無線通訊設備有效聯(lián)系的最大距離是千米.若乙先于甲到達地,且乙從地到地的整個過程中始終能用通訊設備對甲保持有效聯(lián)系,求乙的速度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2014年12月19日,2014年中國數(shù)學奧林匹克競賽(第30屆全國中學生數(shù)學冬令營)在重慶市巴蜀中學舉行.參加本屆中國數(shù)學奧林匹克競賽共有來自各省、市(自治區(qū)、直轄市)、香港地區(qū)、澳門地區(qū),以及俄羅斯、新加坡等國的30余支代表隊,共317名選手.競賽為期2天,每天3道題,限時4個半小時完成.部分優(yōu)勝者將參加為國際數(shù)學奧林匹克競賽而組建的中國國家集訓隊.中國數(shù)學奧林匹克競賽(全國中學生數(shù)學冬令營)是在全國高中數(shù)學聯(lián)賽基礎上進行的一次較高層次的數(shù)學競賽,該項活動也是中國中學生級別最高、規(guī)模最大、最有影響的全國性數(shù)學競賽.2020年第29屆全國中學生生物學競賽也將在重慶巴蜀中學舉行.巴蜀中學校本選修課“數(shù)學建!迸d趣小組調查了2019年參加全國生物競賽的200名學生(其中男生、女生各100人)的成績,得到這200名學生成績的中位數(shù)為78.這200名學生成績均在50與110之間,且成績在內的人數(shù)為30,這200名學生成績的高于平均數(shù)的男生有62名,女生有38名.并根據(jù)調查結果畫出如圖所示的頻率分布直方圖.
(1)求,的值;
(2)填寫下表,能否有的把握認為學生成績是否高于平均數(shù)與性別有關系?
男生 | 女生 | 總計 | |
成績不高于平均數(shù) | |||
成績高于平均數(shù) | |||
總計 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點和直線,直線過直線上的動點且與直線垂直,線段的垂直平分線與直線相交于點
(I)求點的軌跡的方程;
(II)設直線與軌跡相交于另一點,與直線相交于點,求的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是橢圓上的點,,是焦點,離心率.
(1)求橢圓的方程;
(2)設,是橢圓上的兩點,且,(是定數(shù)),問線段的垂直平分線是否過定點?若過定點,求出此定點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(萬元) | ||||||
年銷售量(噸) |
經電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式().對上述數(shù)據(jù)作了初步處理,得到相關的值如表:
(1)根據(jù)所給數(shù)據(jù),求關于的回歸方程;
(2)已知這種產品的年利潤與,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com