【題目】設(shè)f(x)=x3+x,x∈R,當(dāng)0≤θ≤π時,f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實數(shù)m的取值范圍是 .
【答案】( ,+∞)
【解析】解:∵f(x)=x3+x,∴f(x)在R上遞增且為奇函數(shù),
∴當(dāng)0≤θ≤π時,f(mcosθ)+f(sinθ﹣2m)<0等價為:
當(dāng)0≤θ≤π時,f(mcosθ)<﹣f(sinθ﹣2m)=f(2m﹣sinθ),
即mcosθ<2m﹣sinθ,
即m(2﹣cosθ)>sinθ
∵0≤θ≤π,∴2﹣cosθ>0,
則不等式等價為m>
設(shè)g(θ)= ,則g′(θ)= = ,
∵0≤θ≤π,
∴由g′(θ)=0得cosθ= ,即θ= ,
由g′(θ)>0得cosθ> ,即0<θ< ,
由g′(θ)<0得cosθ< ,即 <θ<π,
即當(dāng)θ= 時,g(θ)取得極大值g( )= = = ,
則m> ,
所以答案是:( ,+∞)
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1+x﹣2(e為自然對數(shù)的底數(shù)).g(x)=x2﹣ax﹣a+3.若存在實數(shù)x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)a=1時,求曲線數(shù)在點(1, )處的切線方程;
(2)若時,函數(shù)數(shù)的最小值為0,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且在處取得極小值.設(shè).
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點,并求出零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為的菱形,且,側(cè)面為等邊三角形,且與底面垂直, 為的中點.
(Ⅰ)求證: ;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,討論函數(shù)與圖像的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個樣本M的數(shù)據(jù)是x1 , x2 , …,xn , 它的平均數(shù)是5,另一個樣本N的數(shù)據(jù)x12 , x22 , …,xn2它的平均數(shù)是34.那么下面的結(jié)果一定正確的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓于, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.
(1)求該拋物線的方程;
(2)是否存在直線,使是與的等差中項?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com