精英家教網 > 高中數學 > 題目詳情

【題目】設奇函數上是增函數,且,則不等式的解集為( )

A. B.

C. D.

【答案】D

【解析】

本題考查的是函數的奇偶性和單調性以及解不等式的綜合類問題.在解答時,首先要結合奇偶性和單調性對不等式進行轉化變形,將問題轉化為解不等式:2xf(x)<0,
然后再分類討論即可獲得問題的解答.

:∵函數f(x)是奇函數,函數f(x)在(0,+∞)上是增函數,
∴它在(-∞,0)上也是增函數.∵f(-x)=-f(x),
∴f(-1)=f(1)=0.
不等式x[f(x)-f(-x)]<0可化為2xf(x)<0,
xf(x)<0,
∴當x<0時,
可得f(x)>0=f(-1),∴x>-1,
∴-1<x<0;
x>0時,可得f(x)<0=f(1),
∴x<1,∴0<x<1.
綜上,不等式x[f(x)-f(-x)]<0的解集為{x|-1<x<0,或0<x<1}.
故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據此估計,該模塊測試成績不少于60分的學生人數為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知指數函數滿足,定義域為的函數是奇函數.

(1)求函數的解析式;

(2)若函數上有零點,求的取值范圍;

(3)若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)假設同組中的每個數據用該組區(qū)間的中點值代替,估計該市中學生中的全體男生的平均身高;
(Ⅲ)從該市的中學生中隨機抽取一名男生,根據直方圖中的信息,估計其身高在180cm 以上的概率.若從全市中學的男生(人數眾多)中隨機抽取3人,用X表示身高在180cm以上的男生人數,求隨機變量X的分布列和數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=x2cosx在 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(ax﹣1)lnx+ . (Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線l的方程;
(Ⅱ)設函數g(x)=f'(x)有兩個極值點x1 , x2 , 其中x1∈(0,e),求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:函數f(x)= 是奇函數,命題q:函數g(x)=x3﹣x2在區(qū)間(0,+∞)上單調遞增.則下列命題中為真命題的是(
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數,0≤α<π),以坐標原點O為極點,x軸的正半軸為極軸,并取相同的長度單位,建立極坐標系.曲線C1:p=1.
(1)若直線l與曲線C1相交于點A,B,點M(1,1),證明:|MA||MB|為定值;
(2)將曲線C1上的任意點(x,y)作伸縮變換 后,得到曲線C2上的點(x',y'),求曲線C2的內接矩形ABCD周長的最大值.

查看答案和解析>>

同步練習冊答案