【題目】已知函數(shù),其中.
(1)試討論函數(shù)的單調(diào)性;
(2)若,且函數(shù)有兩個零點,求實數(shù)的最大值.
【答案】(1)見解析;(2).
【解析】
(1)先求導,再根據(jù)定義域和根的大小,分, 兩種情況討論求解.
(2)根據(jù)(1),當時,的單調(diào)遞,故不存在兩個零點,當時,由(1)可知,要使函數(shù)有兩個零點,則需,即,令,研究其最大值,再結(jié)合,確定實數(shù)的最大值.
(1)∵,
∴,
當時,,此時的增區(qū)間為,
當時,由可得,此時的增區(qū)間為,減區(qū)間為,
綜上:當時,的單調(diào)遞增區(qū)間為,
當時,的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為.
(2)由(1)可知,當時,的單調(diào)遞增區(qū)間為,故不存在兩個零點,
當時,由(1)可知,
要使函數(shù)有兩個零點,則,
即,
即,
設(shè),
∴,
∴為上的減函數(shù),
又,,
∴,使,
∴時,,
時,,
∵,∴,
又∵,
∴,∴,
此時,
符合題意,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)用X表示比賽決出勝負時的總局數(shù),求隨機變量X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一2班學生每周用于數(shù)學學習的時間(單位:)與數(shù)學成績(單位:分)之間有如下數(shù)據(jù):
24 | 15 | 23 | 19 | 16 | 11 | 20 | 16 | 17 | 13 | |
92 | 79 | 97 | 89 | 64 | 47 | 83 | 68 | 71 | 59 |
某同學每周用于數(shù)學學習的時間為18小時,試預測該生數(shù)學成績.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點是, ,且橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)若過左焦點且傾斜角為45°的直線與橢圓交于兩點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若在區(qū)間上有極值,求實數(shù)的取值范圍;
(Ⅱ)若有唯一的零點,試求的值.(注:為取整函數(shù),表示不超過的最大整數(shù),如;以下數(shù)據(jù)供參考:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3+x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設(shè)所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當時,怎樣設(shè)計能使總造價最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點處的切線在兩坐標軸上的截距之和為2,求的值
(2)若對于任意的及任意的總有成立.求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com