【題目】在矩形中,,,為線(xiàn)段的中點(diǎn),如圖1,沿折起至,使,如圖2所示.

(1)求證:平面平面;

(2)求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2).

【解析】試題分析:(1)由已知條件證明出平面,根據(jù)面面垂直的判定定理證明出平面平面;(2)取BE的中點(diǎn)為,以為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)且平行于的直線(xiàn)為軸,過(guò)點(diǎn)且平行于的直線(xiàn)為軸,直線(xiàn)軸,建立空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)坐標(biāo),設(shè)平面的法向量為,平面的法向量為,由線(xiàn)面垂直的性質(zhì)定理分別求出的坐標(biāo),求出二面角的余弦值。

試題解析

(1)證明:在圖1中連接,則 ,,. 

,,∴平面,

平面,∴平面 平面.

(2)解:取中點(diǎn),連接

,∴,

∵平面平面,∴平面

為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)且平行于的直線(xiàn)為軸,過(guò)點(diǎn)且平行于的直線(xiàn)為軸,直線(xiàn)軸,建立如圖所示的直角坐標(biāo)系,則,,,,

,,,

設(shè)平面的法向量為,平面的法向量為,

可得;

可得

,由圖形知二面角的平面角為鈍二面角,

所以二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx

1)畫(huà)出函數(shù)fx)的圖象,根據(jù)圖象直接寫(xiě)出fx)的值域;

2)根據(jù)圖象直接寫(xiě)出滿(mǎn)足fx≥2的所有x的集合;

3)若fx)的遞減區(qū)間為(﹣,a),遞增區(qū)間為(b+∞),直接寫(xiě)出a的最大值,b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證: ;

(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn) ,

①求實(shí)數(shù)的取值范圍; ②求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校高一1000名學(xué)生的物理成績(jī),隨機(jī)抽查了部分學(xué)生的期中考試成績(jī),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.

1)估計(jì)該校高一學(xué)生物理成績(jī)不低于80分的人數(shù);

2)若在本次考試中,規(guī)定物理成績(jī)?cè)?/span>m分以上(包括m分)的為優(yōu)秀,該校學(xué)生物理成績(jī)的優(yōu)秀率大約為18%,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列方程組的解集:

1;(2;(3;(4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽(tīng)曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂(lè)曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.

(I)求該小組未能進(jìn)入第二輪的概率;

(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)直線(xiàn)AM,BM相交于點(diǎn)M,且它們的斜率之和為2.

1)設(shè),求的表達(dá)式,并寫(xiě)出函數(shù)的定義域;

2)判斷函數(shù)的奇偶性?并給出證明;

3)試用函數(shù)單調(diào)性的定義證明:在定義域上不是增函數(shù),但在(0,1)∪(1,+)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)試討論函數(shù)的單調(diào)性;

2)若,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①對(duì)立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿(mǎn)足P(A)+P(B)=1,則A與B是對(duì)立事件.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案